基于光谱反射率确定 Y_N 模型公式因数 *n* 及有效网点面积率的方法研究

张刚¹,马秀峰¹,何颂华²,陈桥²,赵子琦¹

(1. 曲阜师范大学, 日照 276800; 2. 深圳职业技术学院, 深圳 518000)

摘要:目的 基于 Y_N 模型的打印机正向特征化,考虑到物理网点扩大与光学网点扩大对模型的影响,需要通过单通道墨量限制,以及采用非线性最优化的方法,来确定油墨的有效网点百分比和该模型修正系数 n。方法 使用 ProductionHouse 10.2 软件实现单通道的墨量限制,使用非线性最优化的方法计算获得 Y_N 模型的公式因子 n 为 2.5。结果 将此 n 值带入 Y_N 模型的反向变换形式,可以获得修正后的有效网点面积率,并获得有效网点百分比与理论网点百分比的一维查找表,进而拟合了理论网点百分比与有效网点百分比,获得网点百分比的传递函数。结论 通过单通道墨量限制和引入 Y_N 模型公式因数 n,消除了因物理网点扩大和光学网点扩大对 Y_N 模型造成的影响,并准确拟合了有效网点百分比与理论网点百分比的传递函数。

关键词:打印机;正向特征化;墨量限制;有效网点百分比

中图分类号: TS801 文献标识码: A 文章编号: 1001-3563(2014)01-0101-07

Research on Methods of Determining the Factor *n* of Yule–Nielsen Model and the Effective Dot Percentage Based on Spectral Reflectivity

ZHANG Gang¹, MA Xiu-feng¹, HE Song-hua², CHEN Qiao², ZHAO Zi-qi¹

(1. Qufu Normal University, Rizhao 276800, China; 2. Shenzhen Polytechnic, Shenzhen 518000, China)

ABSTRACT: **Objective** To determine the effective ink dot percentages and the factor n of the Yule–Nielsen model, based on Yule–Nielsen (Y_N) model–based printer forward characterization, considering the influence of the physical dot gain and optical dot gain, through single–channel ink limit and the nonlinear optimal method. **Methods** The ONYX ProductionHouse 10.2 software was used to realize the single channel of ink limit, and the value of n (2.5) of the Yule–Nielsen model was obtained using nonlinear optimization techniques. **Results** By taking the value of n into the Y_N reverse transformation form, the corrected effective dot percentage was obtained, as well as one–dimensional lookup table of effective dot percentage adding a correction factor n and theoretical dot percentage. Furthermore, the dot transfer function fitted from the theoretical dot percentage to effective dot percentage was obtained. **Conclusion** Through the single–channel ink limit and correction factor n of the Y_N model, the influence of the physical dot gain and the optical dot gain on the Y_N model can be eliminated, and the dot transfer function can be accurately fitted from theoretical dot percentage to effective dot percentage.

KEY WORDS: printer; forward characterization; ink limit; effective dot percentages

在 Y_N 模型公式因数 n 以及有效网点百分比确

定之前,需要通过打印输出各原色油墨梯尺来获取样

收稿日期: 2013-10-22

基金项目: 国家自然科学基金资助项目(61108087)

作者简介:张刚(1988--),男,山东人,曲阜师范大学硕士生,主攻基于光谱的颜色复制。

通讯作者:何颂华(1977--),男,四川人,博士,深圳职业技术学院副教授,主要研究方向为颜色科学与光谱图像处理。

本,但是由于油墨转移到承印物时会出现明显的物理 网点扩大问题^[1],同时纸张对油墨的吸收能力^[2]有 限,所以首先对打印机进行单通道墨量控制尤为重 要。由于光学网点扩大^[3]导致模型精度不准,所以 Y_N模型引入了参数因子 *n* 来校正^[4-6]。

1 单通道墨量限制

由于纸张对油墨的承载吸收能力有限,过多的油 墨转移到纸张上会导致明显的物理网点扩大问题,文 中使用 ONYX ProductionHouse 10.2 软件来实现单通 道的墨量限制(该实验使用 Epson9910 打印机)。使 用 ONYX ProductionHouse 10.2 中"Media Manager"功 能,并通过创建介质配置文件的流程实现墨量控制, 见图 1。

图 1 软件主要参数的设置 Fig. 1 Software main parameter settings

在"Media Manager"功能中,选择创建新的介质 配置文件,参数选择与设置流程为:选择工作流程选 项选择—ICC Workflow。

1) 新介质配置文件。选择已有的介质群组或创 建新的介质群组选项选择—Photo—UC HDR,键入介 质配置文件的名称选项—Advanced Proofing Paper 195。

2)基本介质配置文件设置。选择要使用的墨水 配置选项—CMYKOGcmklk(photo),选择要用于对图 像着色的工艺色彩选项—CMYKOG,定义该介质配置 文件的打印机特定设置选项—介质选项选择—Premium Semigloss Photo Paper。

3) 基本打印模式设置。键入此打印模式的名称—720MD—stochastic,选择打印模式的分辨率—

720MD,选择打印模式的网屏—Stochastic,比例调整—页面大小选择—610 mm Roll。

 4)墨量限制。打印色板—选择每种墨水的色片 数为 30,输出选择为色彩。之后打印输出各通道 30 级油墨梯尺样本见图 2。

图 2 各通道 30 级油墨梯尺样本 Fig. 2 Samples of 30 ink levels of each channel

按照上述参数设置打印出图 2.对于单通道最大 墨量的限制需要找到一个临界值,既能保证原来的色 域范围,又可以有效地降低最大墨量值。文中使用色 度的方法,测量每个通道梯尺色块的光谱反射率,并 转化成 CIE L^*C^*h 值, L^* 代表明度, C^* 代表饱和度, 将各通道计算所得的 L* C* 值绘制成 L* C* 曲线见图 3。从图3可以看出,随着L*值的降低(网点百分比 增加), C^* 值逐渐增大(色块的饱和度增加),当 L^* 值 减小到某一个临界点时,饱和度 C* 值开始减小。取 这个临界点时的网点百分比对应的色块墨量值为该 通道的墨量限制,由此可以分别得到 CMYOG 5 个通 道的墨量限制值。由于黑色为中性非彩色,不存在饱 和度 C*的意义,因此不能通过 L*C*曲线的方式获 得K通道的墨量限制。可以结合人眼的观察来获取 K 通道的墨量限制,当 K 通道随着网点百分比不断 增加,颜色不再发生变化,并目未出现打印问题的临 界点所对应的色块的墨量值为黑色通道 K 的墨量 限制。

将图 3 确定的 CMYKOG 通道的墨量限制值(C 63.4%,M 80.1%,Y 76.6%,K 70.1%,O 96.6%,G 100%)输入到图 1"按需要调整墨量限制"中,并将除CMYKOG 以外的其他通道的墨量值设置为0,从而达到关闭其他油墨通道的目的。数据设置完成后进入下一步"校准"流程,输出打印应用了墨量限制之后的

CMYOG 五色油墨梯尺,测量光谱反射率并转换成 L^* C^* 值,绘制 L^*C^* 曲线,见图 4。由图 4 可以看出,经 过墨量限制之后,CMYOG 色板随着 L^* 值的降低(网 点百分比增加), C^* 值逐渐增大(色块的饱和度增 加),没有出现减小的情况,同时最大 C* 值与图 3 临 界值一致,保证了色域的完整性,同时减少了油墨的 使用量。

图 3 CMYOG 五通道的 L* C* 图

Fig. 3 $L^* C^*$ curves of the five channels of CMYOG

图4 CMYOG 五通道墨量限制前后的 L*C* 图对比

Fig. 4 L^*C^* contrast curves of the five channels of CMYOG before and after limiting ink

2 修正系数 n 值的确定

Yule-Nielsen 模型^[7-9]是在 M_D 模型^[10-13]的基础上改进而得,其引入参数 n 来修正光学网点扩大, n 的引入很好地描述了预测光谱反射率^[14]与测量光谱反射率之间的非线性关系。

$$R_{\lambda} = \left[aR_{\lambda,100\%}^{1/n} + (1-a)R_{\lambda,s}^{1/n}\right]^{n} \tag{1}$$

式中: R_{λ} 为光谱反射率;a为网点百分比; $R_{\lambda,100\%}$ 为100%网点处的光谱反射率; $R_{\lambda,s}$ 为(介质)空白部分的光谱反射率;n为修正系数。

与 M_D 模型一样,可以获得 Y_N 模型的反向变 换形式,公式为:

$$a = \frac{R_{\lambda,m}^{1/n} - R_{\lambda,s}^{1/n}}{R_{\lambda,100\%}^{1/n} - R_{\lambda,s}^{1/n}}$$
(2)

式中:R,,,为实际打印测量的光谱反射率。

使用基于回归分析的方法(最小二乘法)式(2) 可转换为:

$$a = \frac{(R_{\lambda,100\%}^{1/n} - R_{\lambda,s}^{1/n})^{\mathrm{T}} (R_{\lambda,100\%}^{1/n} - R_{\lambda,s}^{1/n})}{(R_{\lambda,100\%}^{1/n} - R_{\lambda,s}^{1/n})^{\mathrm{T}} (R_{\lambda,100\%}^{1/n} - R_{\lambda,s}^{1/n})}$$
(3)

参数 n 一般使用非线性最优化技术获得,即通过 建立样本使用式(1),采用 n 值在一定范围内枚举的 方法带入公式(1),使预测光谱反射率与实际测量光 谱反射率之间的差别达到最小或者变化不大,此时的 n 值为最佳取值。这里所指差别度量方法主要是使用光 谱均方根误差 sRMSE 和拟合度 GFC。流程见图 5。

图 5 确定修正因数 n 的流程

Fig. 5 Flowchart of correction factor n determination

实验过程为:通过 photoshop 创建 CMYKOG 6 通

道文件,每个通道分别做 100%,90%,80%,70%, 60%,50%,40%,30%,20%,10% 十级梯尺的色 块^[15],见图 6,并保存为 tiff 格式的文件。将创建好的 梯尺 tiff 文件导入到 ONYX ProductionHouse 10.2 软 件中,应用 1 中创建的介质配置文件 Advanced Proofing Paper 195 下的 720MD-stochastic 打印模式,即可 输出经过墨量限制之后的 6 通道 10 级梯尺色块样 本。使用 SpectroEye 分别测量每个通道每个色块的 光谱反射率 $R_{\lambda,m}$ 以及纸张的光谱反射率 $R_{\lambda,s}$,记 100% 色块处光谱反射率为实地光谱反射率 $R_{\lambda,m}$ 100% 0

Fig. 6 File of ten ink levels

采用枚举 n 值的方法,可以得到 n ∈ [1,10]时对 应的实际测量光谱反射率与预测计算所得光谱反射 率的均方根误差值,见图 7。

同理可以获得 CMYKOG 各通道 $n \in [1,10]$ 时对 应的实际测量光谱反射率与预测计算所得光谱反射 率的均方根误差值见图 8。从图 8 可以看出,随着 n值的增加均方根误差一直在减小,这与其他获取 n 值 的方法不同,不会出现先减后增的极小值点,所以从 图 8 可以得出,当 n=2.5 时,均方根误差的变化趋于 平缓,近似地把 n=2.5 看作是 n 的最佳取值。

3 理论与有效网点百分比

通过第2节得出n值,将n带入公式(2)中,可以 求得有效网点百分比。修正前(n=1)与修正后(n= 2.5)的网点百分比对照见表1,并将表1转换为一维

表 1

查找表见图9。

通过图 9 可以求得理论网点百分比与加入修正 因子 n 之后的有效网点百分比的网点传递函数为: C:y=0.4951x³-0.5238x²+1.0200x+0.0066 M:y=0.6572x³-0.6592x²+0.9745x+0.0030

转换为一维 Y:y=-0.4266x³+0.8823x²+0.5028x+0.0393 修正系数 *n* 与对应所求有效网点百分比

Tab. 1 Correction factor *n* and corresponding effective dot percentage

Tab. 1 Correction factor " and corresponding effective dot percentage								
C/%	<i>n</i> = 1	n=2.5	M/%	<i>n</i> = 1	n=2.5	Y/%	n = 1	<i>n</i> = 2.5
100	1.000	1.0000	100	1.000	1.0000	100	1.0000	1.0000
90	0.9376	0.8702	90	0.9020	0.8262	90	0.9502	0.8917
80	0.8575	0.7160	80	0.8267	0.7040	80	0.8975	0.7828
70	0.8030	0.6332	70	0.7518	0.6016	70	0.8430	0.6911
60	0.7429	0.5549	60	0.6681	0.5014	60	0.7559	0.5612
50	0.6516	0.4532	50	0.5756	0.4087	50	0.6526	0.4520
40	0.5545	0.3626	40	0.4841	0.3257	40	0.5530	0.3586
30	0.4365	0.2684	30	0.3927	0.2525	30	0.4254	0.2584
20	0.3231	0.1882	20	0.2912	0.1786	20	0.2976	0.1706
10	0.1994	0.1102	10	0.1621	0.0950	10	0.1799	0.0983
K/%	<i>n</i> = 1	n=2.5	0/%	n = 1	n=2.5	G/%	n = 1	n=2.5
100	1.0000	1.0000	100	1.0000	1.0000	100	1.0000	1.0000
90	0.9724	0.8892	90	0.9517	0.8616	90	0.9391	0.8850
80	0.9356	0.7931	80	0.9152	0.7751	80	0.8825	0.7900
70	0.8710	0.6740	70	0.8569	0.6671	70	0.8194	0.6957
60	0.8106	0.5890	60	0.7861	0.5665	60	0.7558	0.6141
50	0.7231	0.4886	50	0.7064	0.4750	50	0.6670	0.5138
40	0.6175	0.3892	40	0.6041	0.3792	40	0.5816	0.4249
30	0.4949	0.2919	30	0.4699	0.2739	30	0.4609	0.3161
20	0.3701	0.2062	20	0.3396	0.1864	20	0.3479	0.2272
10	0.2207	0.1160	10	0.1785	0.0924	10	0.2083	0.1295

图 9 *n*=2.5 修正与修正前有效网点百分比与理论网点百分比的一维查找表 Fig. 9 One-dimensional lookup table of corrected (*n*=2.5) and uncorrected effective dot percentages and theoretical

K: $y = -0.0019x^{3} + 0.1174x^{2} + 0.8545x + 0.0291$ O: $y = 0.2140x^{3} - 0.2407x^{2} + 1.0306x - 0.0111$ G: $y = 0.2267x^{3} - 0.3657x^{2} + 1.1162x + 0.0180$

从图9可以得出,经过单通道墨量限制减小了物 理网点扩大的影响,以及引入Y_N参数因子n减小 光学网点扩大的影响之后,理论网点百分比与使用修 正因子n之后有效网点百分比基本呈线性关系。

4 结语

首先通过 ONYX ProductionHouse 10.2 软件的单 通道墨量限制功能对每个通道的最大墨量进行限制, 解决了物理网点扩大问题。同时,引入 Y_N 模型公 式因数 n,解决了因光学网点扩大对模型造成的影 响。最后,带入修正因数 n 求得加入修正因子 n 之后 的有效网点百分比与理论网点百分比的一维查找表, 并拟合得到其网点传递函数。

参考文献:

- [1] ZENG Di-yuan. Spectral-based Color Separation Algorithm Development for Multiple-ink Color Reproduction [D]. New York: University of Rochester Institute and Technology, 1999.
- [2] 朱慧.纸张性能与印刷适性关系的建模研究[J].包装工

程,2012,33(19):117-121.

ZHU Hui. Research on Relationship between Paper Properties and Printability [J]. Packaging Engineering, 2012, 33 (19):117-121.

- [3] ROGERS G L. Optical Dot Gain in a Halftone Print[J]. Imaging Science and Technology, 1997(41):643-656.
- [4] YULE J A C, NIELSEN W J. The Penetration of Light into Paper and Its Effect on Halftone Reproduction. In: TAGA. Proceedings of TAGA[G]. Sewickley: TAGA, 1951:65-76.
- [5] 杜艳君,张逸新. 经典彩色预测模型[J]. 包装工程, 2006,27(2):99—101.
 DU Yan jun, ZHANG Yi xin. Classic Color Prediction Model[J]. Packaging Engineering, 2006, 27(2):99—101.
- [6] RUCKDESCHEL F, HAUSER O. Yule-Nielsen Effect in Printing a Physical Analysis [J]. Appl Opt, 1978 (17): 3376-3383.
- [7] 周世生,李举,孙帮勇,等. 调频网点有效网点面积率计算研究[J]. 包装工程,2006,27(6):57—60.
 ZHOU Shi-sheng,LI Ju,SUN Bang-yong, et al. Research of Dot Area Transfer Function with FM Half Toning[J].
 Packaging Engineering,2006,27(6):57—60.
- [8] ARNEY J S, ENGELDRUM P G, ZENG H. An Expanded Murray-Davies Model of Tone Reproduction in Half Toning Imaging[J]. Image Sci Tech, 1995(39):502-508.
- [9] ARNEY J S, WU T, BLEHM C. Modeling the Yule-nielsen

Effect on Color Halftone [J]. Imag Sci Tech, 1998 (42): 335.

- [10] CLAPPER F R, YULE J A C. The Effect of Multiple Internal Reflections on the Densities of Halftone Prints on Paper [J]. Opt Soc Am, 1953, 43(7):600.
- [11] GOODALL C. Environmental Awareness and Compliance in Attractive and Functional Packaging [R]. Berlin: Environmental Packaging International committee, 2005:1-9.
- [12] KHANGALDY P, SCHUENEMAN H H. Design Parameters for De-formable Cushion Systems [R]. San Jose: Westpak, inc, 2000:1-17.
- [13] CHEN Shou-yu, GAO Yu, WANG Da-gang. Use of Engineering Fuzzy Sets, BP Neural Network and Genetic Algorithm for Intelligent Decision Making [J]. Proceedings of

(上接第95页)

CHEN Jin, LYU Shi-jie, LI Yao-ming. Fault Diagnosis of Combine Harvester Based on PLC[J]. Transactions of the Chinese Society of Agricultural Machinery, 2011 (s1): 118—122.

[11] 吕玉明, 孔令来, 张平飞. 基于 ATmega128 的智能控制器 设计及其在包装机中的应用[J]. 包装工程, 2009, 30 (11):64-68.

LYU Yu-ming, KONG Ling-lai, ZHANG Ping-fei. Design and Application of Atmega128-based Intelligent Controller in Packaging Machine[J]. Packaging Engineering, 2009, 30 (11):64-68.

- [12] FREUND P R, SHARAR S R. Hyperthermia Alert Caused by Unrecognized Temperature Monitor Malfunction [J]. Journal of Clinical Monitoring, 1990,6(3):257-257.
- [13] 高淑敏,费玉华.基于 PLC 的动态系统故障诊断与带故
 障运行方法[J].北京航空航天大学学报,2004(9):68—
 71.

GAO Shu-ming, FEI Yu-hua. Research on Fault Diagnosis

(上接第100页)

HOU Dong-liang. Motorcycle Packaging Line Balancing Based on MOD [J]. Packaging Engineering, 2012, 33 (21):137—141.

- [14] 杨萍. 基于动作研究的药品包装作业过程分析与优化
 [J]. 包装工程,2010,31(13):66—70.
 YANG Ping. Pharmaceutical Packaging Process Analysis and Optimization Based on Action Research [J]. Packaging Engineering,2010,31(13):66—70.
- [15] 庞新福,杜茂华.基于工业工程中模特法的动作研究 [J].机电产品开发与创新,2007,20(3):28-30.

the World Congress on Intelligent Control and Automation, 2006(1):3052-3056.

- [14] 白春燕,张逸新,秦承红,等. Murray-Davies 网点面积率 预测模型[J]. 包装工程,2008,29(8):39—42.
 BAI Chun-yan, ZHANG Yi-xin, QIN Cheng-hong, et al. Murray-Davies Model for Predicting Dot Area [J]. Packaging Engineering,2008,29(8):39—42.
- [15] 赵晨飞,韩卿,邹晨,等. 尤尔-尼尔森光谱纽介堡模型 中修正指数的研究 [J]. 包装工程,2013,34(3):113— 115.

ZHAO Chen-fei, HAN Qing, ZOU Chen, et al. Research on Correction Factor of Yule – Nielsen Spectral Neugebauer Model[J]. Packaging Engineering, 2013, 34(3):113— 115.

and Running with Fault Method in Dynamic System Based on PLC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004(9):68-71.

- [14] JARI H, ANTTI A. Fault Tree Analysis for Maintenance Needs[J]. Journal of Physics: Conference Series, 2012, 364 (1):012102-012113.
- [15] MARKO C, BORUT M. A Dynamic Fault Tree[J]. Reliability Engineering and System Safety, 2002. (余不详)
- [16] 徐章遂等.故障信息诊断原理及应用[M].北京:国防工 业出版社,2000.

XU Zhang-sui. Diagnosis Principle and Application for the Fault Information [M]. Beijing: National Defense Industry Press, 2000.

[17] PAULF.故障诊断与性能监测[M].王胜,译.广州:华 南理工大学出版社,1988.

PAU L F. Fault Diagnosis and Performance Monitoring [M]. WANG Sheng, Translate. Guangzhou: South China University of Technology Press, 1988.

PANG Xin-fu, DU Mao-hua. Movement Research in MOD Based on Industrial Engineering [J]. Development & Innovation of Machinery & Electrical Products, 2007, 20(3): 28-30.

[16] 张志勇.基于产品工序分析的系统组装生产线平衡分析 与改善[D].上海:上海交通大学,2011.
ZHANG Zhi-yong. The Methods for Solving the Problem of Balancing An Assembly Line[D]. Shanghai: Shanghai Jiaotong University,2011.