食品包装塑料中双酚 F 和双酚 S 迁移量测定的优化及分析

陈旭明, 李婷, 徐思飞

(国家食品软包装产品及设备质量监督检验中心(广东),广东潮州 521011)

摘要: 目的 优化液相色谱串联质谱测定塑料制品中双酚 F 和双酚 S 迁移量的方法。方法 通过色谱条件 及质谱条件的优化,迁移实验所得食品模拟物经 C_{18} 柱分离、甲醇-氨水洗脱、多反应模式监测、外标法 定量。结果 优化条件下,双酚 F 和双酚 S 线性关系良好,水基模拟物的检出限为 4 μ g/L 和 0.2 μ g/L、定量限为 10 μ g/L 和 0.5 μ g/L,油基模拟物的检出限为 20 μ g/kg和 1 μ g/kg、定量限为 50 μ g/kg 和 2.5 μ g/kg,回收率为 $89.2\% \sim 105.5\%$,RSD 值为 $1.42\% \sim 6.18\%$ 。结论 该法准确、灵敏,适用于食品包装塑料双酚 F 和双酚 S 迁移量的测定。

关键词:食品包装;塑料;双酚F和双酚S;迁移量;优化;分析

中图分类号: TB484 文献标识码: A 文章编号: 1001-3563(2022)05-0115-07

DOI: 10.19554/j.cnki.1001-3563.2022.05.016

Optimization and Analysis of Migration Determination of Bisphenol F and Bisphenol S in Food Packaging Plastics

CHEN Xu-ming, LI Ting, XU Si-fei

(China National Quality Supervision and Testing Center for Food Flexible Packaging Product and Machinery (Guangdong), Chaozhou 521011, China)

ABSTRACT: The work aims to optimize the method of determining migration of bisphenol F and bisphenol S in food packaging plastics by HPLC-MS/MS. Under the optimized conditions of chromatography and mass spectrometry, the food simulants obtained from migration test were separated by C_{18} column, eluted by methanol-ammonia, monitored by multiple-reaction monitoring mode and quantified by external standard method. The linear relationship of bisphenol F and bisphenol S was good. The detection limits of water-based simulant were 4 μ g/L and 0.2 μ g/L, and quantitative limits were 10 μ g/L and 0.5 μ g/L, while the detection limits of oil-based were 20 μ g/kg and 1 μ g/kg and quantitative limits were 50 μ g/kg and 2.5 μ g/kg. The recovery rate was 89.2%~105.5% and RSD was 1.42%~6.18%. The method is accurate and sensitive, and suitable for the migration determination of bisphenol F and bisphenol S in food packaging plastics.

KEY WORDS: food packaging; plastics; bisphenol F and bisphenol S; migration; optimization and analysis

双酚 F 和双酚 S 与双酚 A 结构相似,都可用于合成环氧树脂、聚碳酸酯树脂^[1]。近年来作为双酚 A 的替代品被广泛应用于婴幼儿奶瓶、水杯等食品包装塑料中,以规避相关标准对双酚 A 使用的限制^[2]。研

究表明,双酚 F 和双酚 S 具有与双酚 A 类似的激素 干扰效应,同样对婴幼儿的激素水平及智力发育有不 良影响^[3-4]。

当前,关于双酚 F 和双酚 S 的检测有分光光度

收稿日期: 2021-05-14

基金项目:潮州市科学技术局科研项目(2019GY08)

作者简介: 陈旭明(1983—), 男, 高级工程师, 主要研究方向为食品相关产品检验检测。

法^[5]、液相色谱法^[6-7]、气质联用法^[8]和液相色谱串联质谱法^[9-12]。其中,分光光度法及液相色谱法存在灵敏度低、定性不够精准的问题;气质联用法需对目标物衍生化,处理较为烦琐;而液相色谱串联质谱法因灵敏度高、定性精准、处理简单,成为测定双酚 F 和双酚 S 的主流方法。目前,双酚类化合物迁移量的检测方法仅有 GB 31604.1—2016《食品安全国家标准食品接触材料及制品 2, 2-二(4-羟基苯基)丙烷(双酚 A)迁移量的测定》^[13],尚未有双酚 F 和双酚 S 迁移量的国家标准出台。鉴于此,实验参考相关文献资料,通过对流动相、流速、离子模式、母离子和裂解电压、子离子和碰撞电压等参数进行优化,建立液相色谱串联质谱法测定食品包装塑料中双酚 F 和双酚 S 迁移量的方法。

1 实验

1.1 材料与仪器

主要仪器: 液相色谱-串联质谱仪(LC1200-6410B)。

主要材料: 双酚 F、双酚 S 标准品(纯度≥99%, 上海安谱公司); 无水乙醇(分析纯); 乙酸(分析 纯); 橄榄油(分析纯); 甲醇(色谱纯); 正己烷 (色谱纯)。

双酚 F、双酚 S 标准储备液(1000~mg/L、50~mg/L): 分别称取双酚 F 和双酚 S 标准品 25~mg 和 10~mg(精确至 0.1~mg),用甲醇溶解并定容至 25~mL 和 200~mL。

双酚 F、双酚 S 混标液 (10 mg/L、0.5 mg/L): 分别吸取 1.00 mL 双酚 F 和双酚 S 标准储备液于 100 mL 容量瓶中,用甲醇定容至刻度。

1.2 方法

- 1)迁移实验。样品按 GB 31604.1—2015^[14]及 GB 5009.156—2016^[15]的要求进行迁移实验,得到食品模拟物。
- 2)模拟物的处理。迁移实验所得水性模拟液过滤膜后上机测试,称取油基模拟物 2 g (精确到 0.01g)于10 mL 离心管中,依次加入3 mL 正己烷和3 mL 体积分数为50%甲醇水溶液,涡旋1 min,静置分层后吸取下层水溶液,过 0.22 μm 滤膜后上机分析。
- 3)色谱条件。色谱柱尺寸为 50 mm×2.1 mm, 粒 径为 1.8 μm; 柱温为 30 ℃; 进样量为 3 μL; 流动相 为水+甲醇, 梯度洗脱, 洗脱条件见表 1。
- 4)质谱条件。负离子模式,干燥气温度为 350 ℃, 流速为 8 L/min,压力为 276 kPa,多反应监测(MRM) 模式,采集参数见表 2。

表 1 梯度洗脱条件 Tab.1 Gradient elution conditions

时间/min	流速/(mL·min ⁻¹)	水的体积分数/%
0		90.0
0.50		90.0
2.50	0.4	30.0
3.00	0.4	10.0
4.00		10.0
6.00		90.0
8.00		90.0

表 2 双酚 F 和双酚 S 的质谱采集参数 Tab.2 Mass spectrometry parameters of BPF and BPS

化合物	定量离子对相 对分子质量	定性离子对相 对分子质量	裂解电 压/V	碰撞电 压/V
双酚 F	199.1/93.0	199.1/77.0	115	18/18
双酚S	249.1/108.0	249.1/92.0	125	21/28

注: "/" 前为母离子的数据, "/" 后为子离子的数据

2 结果与分析

2.1 流动相的选择和离子模式的确定

比较了以甲醇-水、乙腈-水作为流动相对双酚 F和双酚 S离子化程度的影响,结果表明,目标物在甲醇-水体系下的质谱信号响应和色谱分离效果优于乙腈-水体系。考虑到双酚 F和双酚 S都是带有酚羟基结构的化合物(图 1),较易电离出 H⁺形成负离子,更适合在负离子模式下进行监测,同时流动相中添加氨水等碱性物质利于目标化合物电离,进一步比较了负离子模式下甲醇-水流动相中不同体积分数氨水(0.1%~0.5%)的影响,发现在体积分数为 0.1%氨水下,质谱响应值高于其他体积分数(表 3),因此,实验最终选择甲醇-0.1%氨水溶液梯度洗脱。

表 3 不同体积分数氨水与峰面积的关系 Tab.3 Relationship between different volume fractions of ammonia and peak area

化合物 -	氨水体积分数/%					
	0.1	0.2	0.3	0.4	0.5	
	BPF	2811	2735	2634	2517	2367
	BPS	6387	6125	5769	5436	5215

2.2 流速的选择

流速的大小关系到电喷雾的离子化效率,合理的 流速既能保证离子化充分,又能避免峰展宽,提升实 验效率。实验分析了 0.2~0.5 mL/min 流速内, 双酚 F 和双酚 S 的色谱分离效果和质谱响应。结果表明, 在 0.4 mL/min 流速下, 2 种化合物的分离效果、质谱响应均较理想。

2.3 母离子的确定和裂解电压的选择

全扫描模式下,取标准溶液中间液进样,得到总离子流图。选择质谱图中离子丰度最高的碎片离子作为母离子,从图 2 可得双酚 F 和双酚 S 的母离子分别为 199.1 和 249.0。确定母离子后, MS2 SIM

模式下,裂解电压在 85~135 V内,以 5 V递增,寻找最优电压。结果发现,BPF 和 VBPS 分别在裂解电压为 115 V 和 125 V 时质谱响应最佳,因此实验选择 115 V 和 125 V 分别作为 BPF 和 BPS 的裂解电压。

2.4 子离子的确定和碰撞电压的选择

在 Product Ion 模式下,取标准溶液中间液进样,得到母离子碎片质谱图,选择质谱图中 2 个离子丰度较高的碎片离子作为子离子,从图 3 中可得双酚 F 的

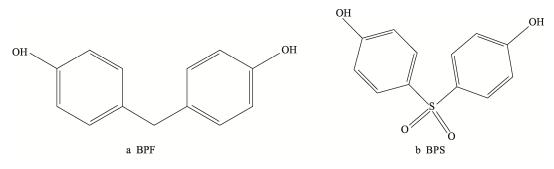


图 1 双酚 F 和双酚 S 的分子结构式 Fig.1 Molecular formula of BPF and BPS

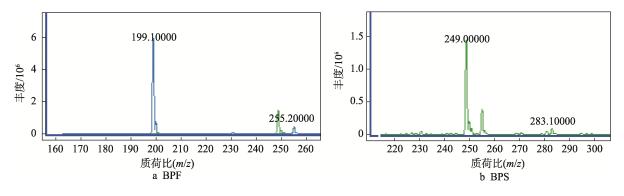


图 2 双酚 F 和双酚 S 母离子的选择 Fig.2 Selection of parent ions of BPF and BPS

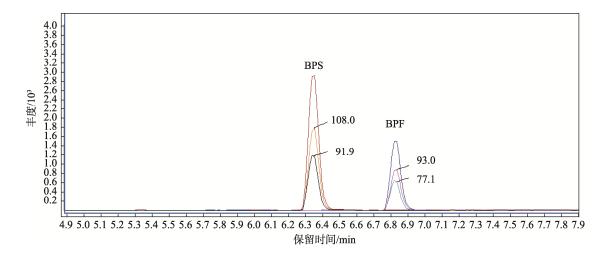


图 3 双酚 F 和双酚 S 子离子的选择 Fig.3 Selection of ions of BPF and BPS

子离子为 93.0 和 77.1,双酚 S 的子离子为 108.0 和 91.9。确定子离子后,仍然在该模式下,设置上述子离子的碰撞电压皆为 1、13、25 和 37 V,寻找较优碰撞电压。结果发现当碰撞电压为 13 V时,子离子93.0 和 77.1 的响应优于其他 3 组碰撞电压;当碰撞电压为 25 V时,子离子 108.0 和 91.9 的响应优于其他 3 组碰撞电压。在 MRM 模式下,在 13 V±5 V及 25 V±5 V的范围内对碰撞电压进一步的优化。结果表明:子离子 93.0 和 77.1 的最优碰撞电压都为 18 V,子离子 108.0 和 91.9 的最优碰撞电压分别为 21 V和 28 V。

2.5 定量方法的选择

常见的定量方法有外标法和内标法,内标法适合于前处理复杂、进样量不准确的方法分析,虽定量精准,但也存在操作烦琐、内标物价格昂贵的问题。该方法前处理简单,采用自动进样器进样,进样量准确,适合采用外标法定量,相比内标法可减少内标物的添加和待测溶液的定容环节,简化操作步骤。

2.6 工作曲线与检出限

2.6.1 水基食品模拟物标准工作溶液

准确吸取双酚 F、双酚 S 标准溶液中间液 0.05、0.25、0.50、0.75、1.00 mL 于 5 个 50 mL 容量瓶中,用相应的模拟物定容,得到质量浓度为 10.0、50.0、100、150、200 µg/L 的双酚 F 标准工作液和质量浓度为 0.500、2.50、5.00、7.50、10.0 µg/L 的双酚 S 标准工作液。

2.6.2 油基食品模拟物标准工作溶液

准确称取 2 g(精确至 0.01g) 橄榄油于 5 支 10 mL

试管中,分别加入标准中间液 10、25、50、100、150 μ L,得到含量为 50.0、125、250、500、750 μ g/kg 的 双酚 F 标准工作液和含量为 2.50、6.25、12.5、25.0、37.5 μ g/kg 的双酚 S 标准工作液。按 1.2.2 节提取后测定,分别以 3 倍信噪比和 10 倍信噪比所对应的目标物浓度作为检出限和定量限。4 种模拟物的曲线方程、相关系数、检出限及定量限见表 4,其中 X 为目标物的质量浓度(mg/L),Y 为目标物定量离子的峰面积。

2.7 回收率和重复性

根据线性范围,实验对添加了低、中、高3个浓度水平标准物质的4种模拟物进行检测,每个浓度水平各测定5次。结果表明(表5),双酚F的加标回收率为90.9%~102.8%,相对标准偏差(RSD)为2.01%~6.18%,双酚S的加标回收率为89.2%~105.5%,相对标准偏差(RSD)为1.42%~4.13%,均满足定量分析的要求。

2.8 实际样品测试

选取几种不同材质(PP、PE、PC、PET和PS)的塑料制品,裁剪成面积相等的片材,在相同的模拟物、迁移条件下浸泡后用上述方法进行测试,结果显示(表6),5个样品中,材质为PC的饮水口杯检出双酚F和双酚S的迁移,其他样品均未检出,可能与这2种化合物作为双酚A的替代物应用于PC材料有关。在该样品中,双酚F和双酚S在50%乙醇中的迁移量均大于4%乙酸,这是因为2种化合物都是具有酚羟基结构物质,更易向含有羟基结构的50%乙醇迁移。

表 4 4 种模拟物中双酚 F 和双酚 S 的线性关系和检出限 Tab.4 Linear relationship and detection limits of BPF and BPS in 4 simulants

目标物	模拟物	曲线方程	相关系数	检出限	定量限
	乙醇(10%)	y=17.605x-65.726	0.9987	4 μg/L	10 μg/L
动物	乙酸(4%)	y=17.456x+30.204	0.9988	$4~\mu g/L$	$10~\mu g/L$
双酚 F	乙醇(50%)	y=17.528x+48.676	0.9995	$4~\mu g/L$	$10~\mu g/L$
	橄榄油	y=4.831x+24.177	0.9987	20 μg/kg	50 μg/kg
	乙醇(10%)	y=518.931x+29.304	0.9990	0.2 μg/L	0.5 μg/L
対無状 G	乙酸(4%)	y=566.684x+83.734	0.9992	$0.2~\mu g/L$	$0.5~\mu g/L$
双酚 S	乙醇(50%)	<i>y</i> =563.683 <i>x</i> +89.581	0.9986	$0.2~\mu g/L$	$0.5~\mu g/L$
	橄榄油	y=188.330x+252.850	0.9989	1 μg/kg	$2.5~\mu g/kg$

注: 括号内数值皆为体积分数

表 5 双酚 F 和双酚 S 的准确度和精密度实验结果 (n=5) Tab.5 Results of accuracy and precision tests for BPF and BPS (n=5)

目标物	模拟物	加标值/	测定值/(µg·kg ⁻¹)				国业本(0/	DCD/0/	
日你彻		$(\mu g \cdot kg^{-1})$	1	2	3	4	5	- 回收率/%	RSD/%
		10	9.35	9.22	10.1	9.56	9.71	95.9	3.57
	乙醇(10%)	50	47.4	48.9	45.6	48.5	49.5	96.0	3.20
		150	149.2	151.0	152.8	142.5	151.5	99.6	2.94
		10	9.21	9.84	8.81	9.10	9.35	92.6	4.09
	乙酸(4%)	50	49.0	51.3	47.4	48.3	50.4	98.6	3.19
双酚 F		150	153.1	149.9	145.3	162.0	151.7	101.6	4.06
X) T		10	9.20	9.42	9.51	10.1	9.35	95.2	3.63
	乙醇(50%)	50	4.87	4.31	4.66	4.31	4.57	90.9	5.28
		150	140.6	148.4	148.8	149.0	137.2	96.7	3.93
		50	50.7	44.3	47.7	43.7	45.4	92.7	6.18
	橄榄油	125	123.4	121.5	116.0	125.4	113.5	96.0	4.19
		500	518.7	512.3	501.0	510.4	528.5	102.8	2.01
	乙醇(10%)	0.5	0.436	0.476	0.453	0.447	0.461	91.0	3.31
		2.5	2.32	2.44	2.51	2.29	2.40	95.7	3.73
		7.5	7.31	7.22	7.36	7.46	7.21	97.5	1.42
		0.5	0.479	0.499	0.476	0.501	0.483	97.6	2.38
	乙酸(4%)	2.5	2.47	2.52	2.41	2.30	2.40	96.8	3.42
双酚 S		7.5	7.23	7.53	7.44	7.34	7.46	98.7	1.58
双切 3		0.5	0.505	0.454	0.481	0.479	0.465	95.4	4.03
	乙醇(50%)	2.5	2.58	2.35	2.56	2.52	2.45	99.7	3.76
		7.5	7.88	7.82	8.02	8.12	7.73	105.5	1.97
		2.50	2.26	2.35	2.18	2.21	2.15	89.2	3.51
	橄榄油	6.25	6.15	6.59	6.25	6.49	6.33	101.8	2.80
		25.0	25.4	23.5	26.3	25.3	24.7	100.2	4.13

注: 括号内数值皆为体积分数

表 6 不同材质塑料制品中双酚 F 和双酚 S 的测试结果 Tab.6 Results of BPF and BPS in different materials of plastic products

样品名称	材质	模拟物	迁移条件 -	测试结果/(μg·kg ⁻¹)		
件吅石你	初灰	快1以初	工 抄 条件	BPF	BPS	
饭盒盖	PP	乙酸(4%)		ND	ND	
火 血 血	FF	乙醇(50%)		ND	ND	
塑料盒	PE	乙酸(4%)	70 ℃, 2 h, 第 1 次	ND	ND	
坐 件品	FL	乙醇(50%)		ND	ND	
饮水口杯	PC	乙酸(4%)		65	23	
	T C	乙醇(50%)		216	90	
饮料瓶	PET	乙酸(4%)		ND	ND	
	ILI	乙醇(50%)		ND	ND	
食品托	PS	乙酸(4%)		ND	ND	
	rs	乙醇(50%)		ND	ND	

注: 括号内数值皆为体积分数

3 结语

文中重点针对流动相、流速、离子模式、母离子和裂解电压、子离子和碰撞电压等参数进行优化,建立了液相色谱串联质谱法测定食品包装塑料中双酚F和双酚 S 迁移的分析方法。方法的线性、检出限、定量限、精密度及回收率均可满足定量分析的要求,能够适用于日常检测。该方法亦可推广应用于纸包装制品、涂层制品等食品用接触材料中,考虑到这 2 种物质与双酚 A 和壬基酚性质相近,后续可探索 4 种物质迁移量同时进行测定的方法。

参考文献:

- [1] 沈杰, 刘建超, 陆光华, 等. 双酚 S 和双酚 F 在水环境中的分布、毒理效应及其生态风险研究进展[J]. 生态毒理学报, 2018, 13(5): 37-48.
 - SHEN Jie, LIU Jian-chao, LU Guang-hua, et al. A Review of the Occurrence, Toxicology and Ecological Risk Assessment of Bisphenol S and F in Aquatic Environment[J]. Asian Journal of Ecotoxicology, 2018, 13(5): 37-48.
- [2] GB 9685—2016, 食品安全国家标准 食品接触材料 及制品用添加剂使用标准[S].
 - GB 9685—2016, National Food Safety Standards Application Standard of Additives for Food Contact Materials and Products[S].
- [3] 李圆圆, 付旭锋, 赵亚娴, 等. 双酚 A 与其替代品对 黑斑蛙急性毒性的比较[J]. 生态毒理学报, 2015, 10(2): 251-257.
 - LI Yuan-yuan, FU Xu-feng, ZHAO Ya-xian, et al. Comparison on Acute Toxicity of Bisphenol a with Its Substitutes to Pelophylax Nigromaculatus[J]. Asian Journal of Ecotoxicology, 2015, 10(2): 251-257.
- [4] 吴泽颖, 罗世鹏, 杨柳, 等. 高效液相色谱法测定皮革中的双酚 S[J]. 皮革科学与工程, 2016, 26(2): 72-75.
 - WU Ze-ying, LUO Shi-peng, YANG Liu, et al. Determination of Bisphenol S in Leather by HPLC[J]. Leather Science and Engineering, 2016, 26(2): 72-75.
- [5] 贾聪聪, 刘丽艳, 王亚文, 等. 紫外分光光度法测定 热敏纸中的双酚 S[J]. 河北大学学报(自然科学版), 2020, 40(2): 144-150.
 - JIA Cong-cong, LIU Li-yan, WANG Ya-wen, et al. Determination of Bisphenol S in Thermal Paper by Ultraviolet Spectrophotometry[J]. Journal of Hebei University (Natural Science Edition), 2020, 40(2):

144-150.

- [6] 刘丽艳,白洁,王亚文,等.高效液相色谱法测定厨房用纸中双酚 S[J]. 理化检验-化学分册,2019,55(5):584-590.
 - LIU Li-yan, BAI Jie, WANG Ya-wen, et al. HPLC Determination of Bisphenol S in Kitchen Papers[J]. Physical Testing and Chemical Analysis Part B (Chemical Analysis), 2019, 55(5): 584-590.
- [7] 李娟, 刘智敏, 许志刚. 高效液相色谱法分析塑料食品包装材料中的双酚类化合物[J]. 化学世界, 2014, 55(10): 598-600.
 - LI Juan, LIU Zhi-min, XU Zhi-gang. Analysis of Bisphenolic Compounds in Plastic Food Packaging Materials by High Performance Liquid Chromatography[J]. Chemical World, 2014, 55(10): 598-600.
- [8] 焦艳娜, 丁利, 李晖, 等. 加速溶剂萃取-GC-MS/MS 法测定食品接触材料中双酚 A、双酚 F 及其衍生物的残留量[J]. 包装工程, 2011, 32(15): 53-57.

 JIAO Yan-na, DING Li, LI Hui, et al. Determination of
 - Bisphenol A, Bisphenol F and Their Derivatives Residues in Food Contact Materials by Accelerated Solvent Extraction and GC-MS/MS[J]. Packaging Engineering, 2011, 32(15): 53-57.
- [9] 梁锡镇, 隋海霞, 李丹, 等. 液相色谱-三重四极杆质谱同时测定食品接触材料中双酚 A、双酚 F 与双酚 S 的迁移量[J]. 分析测试学报, 2018, 37(1): 87-91. LIANG Xi-zhen, SUI Hai-xia, LI Dan, et al. Determination on Migration of Bisphenol A, Bisphenol F and Bisphenol S in Food Contact Materials by Liquid Chromatography-Tandem Mass Spectrometry[J]. Journal of Instrumental Analysis, 2018, 37(1): 87-91.
- [10] 罗世鹏, 吴泽颖, 商贵芹, 等. 超高效液相色谱-串联质谱法测定食品包装材料中双酚 S 含量[J]. 食品安全质量检测学报, 2014, 5(11): 3576-3579.

 LUO Shi-peng, WU Ze-ying, SHANG Gui-qin, et al.

 Determination of Bisphenol S in Food Contact Materials by Ultra Per-Formance Liquid Chromatography-Tandem Mass Spectrometry[J]. Journal of Food
- [11] 罗玉玮, 彭彬, 钟文俊, 等. 双酚 S 迁移量的快速检测及迁移规律研究[J]. 包装工程, 2018, 39(17): 97-102.

Safety & Quality, 2014, 5(11): 3576-3579.

LUO Yu-wei, PENG Bin, ZHONG Wen-jun, et al. Rapid Detection of Migrated Mass of Bisphenol S and Its Migration Rule[J]. Packaging Engineering, 2018, 39(17): 97-102.

- [12] 廖勤俭,安明哲,李杨华,等. 高效液相色谱飞行时间质谱联用法检测食品包装材料迁移物双酚 S[J]. 酿酒科技,2017(7): 121-123.
 - LIAO Qin-jian, AN Ming-zhe, LI Yang-hua, et al. Determination of the Migration of Bisphenol S in Food Packaging Materials by LC-QTOF[J]. Liquor-Making Science & Technology, 2017(7): 121-123.
- [13] GB 31604.10—2016, 食品安全国家标准 食品接触 材料及制品 2,2-二(4-羟基苯基)丙烷(双酚 A) 迁移量的测定[S].
 - GB 31604.10—2016, National Food Safety Standards Determination of Migration of 2,2-Bis

- (4-Hydroxyphenyl) Propane (Bisphenol A) in Food Contact Materials and Products[S].
- [14] GB 31604.1—2015, 食品安全国家标准 食品接触材料及制品迁移试验通则[S].
 - GB 31604.1—2015, National Food Safety Standards General Rules for Migration Test of Food Contact materials and Products[S].
- [15] GB 5009.156—2016, 食品安全国家标准 食品接触 材料及制品迁移试验预处理方法通则[S].
 - GB 5009.156—2016, National Food Safety Standards General Rules of Pretreatment Methods for Migration Test of Food Contact Materials and Products[S].