文章摘要
付婉莹,刘东.基于人工神经网络的光谱反射率重建[J].包装工程,2015,36(7):103-107.
FU Wan-ying,LIU Dong.Reconstruction of Spectral Reflectance Based on Artificial Neural Networks[J].Packaging Engineering,2015,36(7):103-107.
基于人工神经网络的光谱反射率重建
Reconstruction of Spectral Reflectance Based on Artificial Neural Networks
投稿时间:2014-09-18  修订日期:2015-04-10
DOI:
中文关键词: BP神经网络  FNN神经网络  光谱反射率  精度
英文关键词: BP neural network  FNN neural network  spectral reflectance reconstruction  accuracy
基金项目:
作者单位
付婉莹 上海印刷出版高等专科学校上海 200093 
刘东 曲阜师范大学日照 276826 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究基于BP神经网络法和FNN神经网络法重构图像光谱反射率的精度。方法 以SG标准色卡作为训练样本, 分别使用BP和FNN神经网络法, 对测试样本DC标准色卡的光谱反射率进行预测, 并利用CIEL*a*b*色差公式、 均方根误差(ERMS)和光谱匹配精度(GFC)对结果进行评价。结果 BP和FNN神经网络重构的光谱反射率平均色差 (ΔEab) 分别为2.997和3.071, 平均均方根误差 (ERMS) 分别为0.056和0.049, 平均光谱匹配精度 (GFC) 分别为0.987和0.991。 结论 2种神经网络方法重构的光谱反射率具有相当优越的色度和光谱精度。相比于FNN神经网络, BP神经网络更加适合于光谱图像的获取领域。
英文摘要:
      The aim of this work was to study the accuracy of the image spectral reflectance reconstructed based on BP neural network and FNN neural network. SG standard color card was taken as the training sample to predict the spectral reflectance of DC standard color card using BP neural network and FNN neural network, respectively, and then the results were evaluated and analyzed with CIE L*a*b* color difference, error root mean square and Goodness-Fitting Coefficient. The average color difference, average error root mean and average Goodness-Fitting Coefficient of reflectance reconstructed with BP neural network were 2.997, 0.056, and 0.981, respectively, while those reconstructed with FNN neural network were 3.071, 0.049, and 0.991, respectively. The spectral reflectance reconstructed by both neural networks had good color and spectral accuracy. Compared to the FNN neural network, BP neural network was more suitable for the field of spectral image acquisition.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第22594746位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号