文章摘要
任少伟,杨传民,陈国营,何思念,郭杰.大豆蛋白液喷雾场粒度分布变化[J].包装工程,2018,39(17):46-52.
REN Shao-wei,YANG Chuan-min,CHEN Guo-ying,HE Si-nian,GUO Jie.Particle Size Distribution Change of Soybean Protein Spray Field[J].Packaging Engineering,2018,39(17):46-52.
大豆蛋白液喷雾场粒度分布变化
Particle Size Distribution Change of Soybean Protein Spray Field
投稿时间:2018-03-29  修订日期:2018-09-10
DOI:10.19554/j.cnki.1001-3563.2018.17.008
中文关键词: 大豆蛋白液  激光粒度仪  粒度分布
英文关键词: soybean protein solution  laser particle size analyzer  particle size distribution
基金项目:天津市高校发展基金(20130403)
作者单位
任少伟 天津商业大学天津 300134 
杨传民 天津商业大学天津 300134 
陈国营 天津商业大学天津 300134 
何思念 天津商业大学天津 300134 
郭杰 天津商业大学天津 300134 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究大豆蛋白液喷雾场粒度分布的变化规律,为选择一个合适的蔬菜纸喷涂面提供实验数据,以期得到质量好的蔬菜复合纸覆膜。方法 将大豆蛋白喷涂雾化场网格化,使用粒度仪分别测量各个区域的粒径和粒度占比分布。结果 雾化场轴向距离从H=10 cm处的95 μm左右,到H=15 cm处的85 μm左右,到H=20 cm处的65 μm左右,再到H=30 cm处的45 μm左右,最大粒径占比范围逐渐降低;雾化场径向距离从L=4 cm处的40~50 μm,到L=8 cm处的35~40 μm,到L=12 cm处的35~40 μm,再到L=16 cm处的30~35 μm,最大粒径占比范围也逐渐降低;在相同的喷涂气压、喷涂液压下,随着轴向距离的增加,大豆蛋白液液滴粒径分布范围的减小,大粒径大豆蛋白液液滴的比例逐渐减少,粒径分布朝着小粒径方向靠拢,大豆蛋白液液滴粒径分布曲线越来越陡峭;在喷涂气压、喷涂液压不变的情况下,仅仅改变大豆蛋白液的粘度,在相同的喷雾场位置随着大豆蛋白液粘度的减小,粒度分布朝小粒径方向靠拢,小粒径大豆蛋白液液滴比例逐渐减小。结论 喷涂气压越大、大豆蛋白液粘度越小,雾化效果越好,而喷涂液压对雾化效果影响不大;大豆蛋白液喷雾场液滴的粒径分布随着喷雾贯穿距离的增加,小粒径液滴所占比例逐渐增加,粒径分布曲线朝小粒径方向发展,同时随着垂直与喷雾轴心线径向距离的增加,小粒径液滴所占百分比也增加,粒径分布曲线朝着小粒径方向发展。
英文摘要:
      The work aims to study the change law of spray field particle size distribution of soybean protein solution, to provide experimental data for choosing a suitable vegetable paper coating surface, which can get vegetable paper composite film of good quality. The spray atomization field of soybean protein was grid-enabled. The particle sizes and particle size ratio distributions of each area were respectively measured by the particle size analyzer. The axial distance of the atomization field was from about 95 μm at H=10 cm, to about 85 μm at H=15 cm, to about 65 μm at H=20 cm, and then to about 45 μm at H=30 cm. The maximum particle size ratio was gradually decreased, and the radial distance of the atomization field was from 40~50 μm at L=4 cm, to 35~40 μm at L=8 cm, to 35~40 μm at L=12 cm, and then to 30~35 μm at L=16 cm. The maximum particle size ratio was gradually reduced; under the same spray pressure and spray hydraulic pressure, as the axial distance increased, the particle size distribution range of the soybean protein solution droplets decreased, and the ratio of large-particle size soybean protein solution droplets was gradually decreased. The particle size distribution approached the direction of the small particle size, and the particle size distribution curve of the soybean protein solution droplets became steeper and steeper. When the spray pressure and the spray hydraulic pressure were constant, only the viscosity of the soybean protein solution was changed. At the same spray field position, as the viscosity of the soybean protein solution decreased, the particle size distribution approached the direction of small particle size, and the proportion of the small particle size soybean protein solution droplets was gradually decreased. The higher the spray pressure, the smaller the viscosity of the soybean protein solution, and the better the atomization effect. The spray hydraulic pressure has little effect on the atomization effect. The particle size distribution of the soybean protein solution spray field droplets gradually increases with increase of the spray penetration distance and the proportion of the small particle size droplets, and the particle size distribution curve develops toward the small particle size. At the same time, as the radial distances of the vertical axis and spray axis increase, the percentage of small particle size droplets also increases, and the particle size distribution curve develops toward the small particle size.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第22648282位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号