引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2231次   下载 1376 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于CAFOA-GRNN的包装机热封温度传感器的故障检测
陈小康1, 涂煊2, 许维东1
1.上海理工大学,上海 200093;2.上海工业自动化仪表研究院有限公司,上海200233
摘要:
目的 为了实现自动包装机热封工艺中温度传感器的故障实时故障检测。方法 使用广义回归神经网络(General Regression Neural Network, GRNN)构建了热封温度传感器状态自动检测网络,再采用混沌加速果蝇优化算法(Chaos Accelerated Fruit Fly Optimization Algorithm , CAFOA)进行广义回归神经网络的学习因子优化选取,求解出最优学习因子。通过建立CAFOA-GRNN自动检测模型,再结合统计学中置信区间的方法,对故障进行诊断分类。结果 在传感器故障实验中,将理想故障函数与历史运行数据叠加,产生故障数据集,并将其用于验证建立的模型,获得了较好的检测效果,准确率较高。结论 该方法实现了传感器故障的实时检测,可以用于提高生产的可靠性,具有一定的工程实用价值。
关键词:  广义回归神经网络  混沌加速果蝇优化算法  学习因子  置信区间
DOI:10.19554/j.cnki.1001-3563.2019.13.030
分类号:TB486
基金项目:
Packaging Machine Heat Sealing Temperature Sensor Fault Detection Based on CAFOA-GRNN
CHEN Xiao-kang1, TU Xuan2, XU Wei-dong1
1.University of Shanghai for Science and Technology, Shanghai 200093, China;2.Shanghai Institute of Process Automation and Instrumentation, Shanghai 200233, China
Abstract:
The paper aims to realize the fault real-time fault detection of the temperature sensor in the heat sealing process of the automatic packaging machine. The generalized regression neural network (GRNN) was used to construct a state automatic detection network of heat-sealed temperature sensor, and then the Chaos Accelerated Fruit Fly Optimization Algorithm (CAFOA) was used to study the generalized regression neural network. Factor optimization was selected to solve the optimal learning factor. By establishing a CAFOA-GRNN automatic detection model, combined with the statistical confidence interval method, the faults were classified and diagnosed. In the sensor failure experiment, the ideal fault function was superimposed with the historical operation data to generate the fault data set, to verify the established model. Good detection effect was obtained, and the accuracy was high. The method realizes the real-time detection of sensor failure, and can be used to improve the reliability of production, and has certain engineering practical significance.
Key words:  general regression neural network  chaos accelerated fruit fly optimization algorithm  learning factor  confidence interval

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26589331位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号