引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 332次   下载 197 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于视觉的导向辊生产车间AGV定位算法设计
任慧冉1,刘善慧1,边旭2,陈宇宏3,刘嘉琪1
1.西安理工大学,西安 710048;2.西安交通大学,西安 710049;3.富联精密电子(郑州)有限公司,郑州 450001
摘要:
目的 解决导向辊生产车间物料输送AGV的激光传感器存在的信息复杂度低、重复率高,且在不断迭代重采样过程中极易丢失正确位姿附近粒子造成定位失败等问题。方法 提出一种基于视觉的自适应蒙特卡洛定位算法。建立相机观测模型和自动导引运输车本体运动模型,对观测模型进行去畸变处理,完成相机标定;设计基于视觉的自适应蒙特卡洛算法,获取特征信息,并用词袋模型进行分类,使用激光雷达构建2D栅格地图,采用特征点匹配估计位姿,实现AGV自我精确定位。结果 仿真实验结果表明,本文所提算法与传统自适应蒙特卡洛定位(Adaptive Monte Carlo Localization,AMCL)算法相比,可使机器人更加快速地收敛到精度较高的位姿,具有更好的定位性能。结论 基于视觉的AMCL算法设计,实现了导向辊生产车间机器人的高精度定位,优化了作业流程,提高了生产线系统智能化运行水平,可为其他场景定位应用提供参考。
关键词:  导向辊生产车间  物料输送AGV  SLAM  词袋模型  AMCL定位
DOI:10.19554/j.cnki.1001-3563.2024.15.027
分类号:
基金项目:陕西省重点研发计划(2024GX-ZDCYL-02-02);国家重点研发项目(2019YFB1707204);陕西省科技创新引领计划(2020QFY03-08)
Vision-based Localization Algorithm Designed for AGVs in Guide Roll Production Workshop
REN Huiran1, LIU Shanhui1, BIAN Xu2, CHEN Yuhong3, LIU Jiaqi1
(1. Xi'an University of Technology, Xi'an 710048, China; 2. Xi'an Jiaotong University, Xi'an 710049, China;3. Foxconn Precision Electronics (Zhengzhou) Co., Ltd., Zhengzhou 450001, China)
Abstract:
The work aims to solve the problems of low complexity and high repetition rate of laser sensor information for material delivery AGVs in guiding roller production workshops, which often leads to the loss of particles near the correct pose during iterative resampling and results in positioning failures. A visual-based adaptive Monte Carlo localization algorithm was proposed. A camera observation model and an autonomous guided vehicle (AGV) body motion model were established. The observation model was processed for distortion correction to complete camera calibration. A visual-based adaptive Monte Carlo algorithm was designed to extract feature information and classify it using a bag-of-words model. A 2D map was constructed using laser radar, and feature point matching was utilized to estimate the pose and achieve self-localization of the AGV. The simulation experiments showed that, compared with the traditional Adaptive Monte Carlo Localization (AMCL) algorithm, the proposed localization algorithm enabled the robot to quickly converge to a highly accurate pose and exhibited superior localization performance. The visual-based AMCL algorithm is designed to achieve high-precision positioning for AGVs in guiding roller production workshops, optimizing operational processes and enhancing the level of intelligent operation in production line systems. It can provide reference for locating applications in other scenarios.
Key words:  guide roller production workshop  material conveying AGV  SLAM  bag of words model  AMCL

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26381669位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号