Preparation of Polyphenols/Chitosan/Alginate Nano-microspheres

LU Min¹, WANG Li-qiang¹,²

(¹Jiangnan University, Wuxi 214122, China; ²Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122, China)

ABSTRACT: The work aims to study the effects of various factors on the loading efficiency and encapsulation efficiency of polyphenol/chitosan/alginate nano-microspheres and research the in vitro release rate of nano-microspheres, so as to provide the preliminary basis for the preparation of slow release antibacterial film at later periods. Through the single factor experiment and orthogonal test, the effects of concentration of alginate, chitosan, CaCl₂, polyphenol solutions on the loading efficiency and encapsulation efficiency of nano-particles were investigated, and the in vitro release rate was studied. When the concentrations of alginate, chitosan, CaCl₂, polyphenol solutions were 15, 10, 15 and 0.8 mg/mL, the loading efficiency of nano-particles prepared under such process condition was 22.71%, the encapsulation efficiency was 61.38% and the particle size was mainly around 500 nm; the results showed that microspheres had a good sustained-release effect. The optimal process preparation conditions obtained lays a good foundation for the preparation of slow release antibacterial film at later periods.

KEY WORDS: polyphenols/chitosan/alginate; nano-microspheres; loading efficiency; encapsulation efficiency; in vitro release rate
鼠伤寒沙门氏菌等微生物具有明显的抗菌效果。在纳米微球的制备方法中，主要含有离子胶凝法、微球法等。Körp等通过包埋 BSA（牛血清白蛋白）和阿霉素制备了双联的壳聚糖-海藻酸钠纳米级的核壳结构粒子，最终得到包埋率分别为 45% 和 50%。Kafshian 等利用壳聚糖和海藻酸钠接枝共聚抗菌性淀粉包埋抗菌剂尼生素，制得抗菌淀粉的载抗菌剂及其包埋率较未改性海藻酸钠有增大的趋势，尼生素与海藻酸钠的质量比越大，其载抗菌剂率越低，包埋率越高，水凝胶的粒径越大。

这里采用反相乳液法，以食用大豆油为油相，将表面活性剂 Tween80 和 Span80 加到油相中，搅拌形成反向胶束。同时在搅拌条件下将含有茶多酚的海藻酸钠溶液加入反应体系，再加入氯化钙进行交联反应，进而形成茶多酚/壳聚糖海藻酸钠纳米微球，并研究各因素对其体外释放行为的影响。

1 实验

1.1 材料与仪器

主要材料：茶多酚（食品级），郑州瑞佳食品添加剂有限公司；金龙鱼非转基因大豆油，市售；海藻酸钠（AR），壳聚糖（AR），Tween80（CP），Span80（CP），氯化钙（AR），正戊烷（AR），十二水磷酸三钠（AR），二水磷酸三钠（AR），醋酸（AR），均购于国药集团化学试剂有限公司。

主要仪器：AB204-N 电子分析天平，梅特勒-托利多仪器有限公司；PXR-9 高温鼓风干燥箱，上海一恒科学仪器有限公司；RJ-TDL-50A 低温台式大容量离心机，无锡江阴分析仪器有限公司；SZCL-30 磁力加热搅拌器，上海标本模型；SCIENTZ-50F 冷冻干燥机，宁波新芝；KTHA-015TBS 恒温恒湿干燥箱，昆山庆声电子科技有限公司；ALPHA II布鲁克红外光谱仪，布鲁克光谱仪器公司；SM-5000L 喷雾发射扫描电子显微镜，日本 JEOL 公司；Zetasizer Nano ZS90 型激光粒度分析仪，英国 Malvern 公司；UV-2000 型紫外-可见光光度计，尤尼柯（上海）仪器有限公司。

1.2 方法

1）PBS 缓冲溶液的配制。称取 5.84 g Na₂HPO₄·12H₂O 和 2.27 g Na₃HPO₄·2H₂O，分别于 250 mL 的容量瓶内用蒸馏水定容，取 85 mL 的 Na₂HPO₄·12H₂O 溶液和 15 mL 的 Na₃HPO₄·2H₂O 溶液倒入 100 mL 容量瓶内，配制成 pH 值为 7.5 的 PBS 缓冲溶液。

2）茶多酚海藻酸钠溶液的配制。称取一定量的海藻酸钠粉末和茶多酚倒入装有蒸馏水的烧杯中，于水浴锅内搅拌 10 h（50℃，300 r/min）。

3）壳聚糖溶液的配制。称取一定量壳聚糖倒入装有体积分数为 2%的醋酸溶液烧杯内，于水浴锅内搅拌 8 h（50℃，300 r/min）。

4）纳米微球的制备。取一定量的大豆油和乳化剂于烧杯中，水浴锅内搅拌 10 min 40℃，400 r/min），然后加入一定量茶多酚海藻酸钠溶液，搅拌 30 min，再加入 CaCl₂ 溶液搅拌乳化 3 h。反应结束后，倒入正戊烷搅拌 10 min（150 r/min），静置分层。取下层乳白色乳液，加入壳聚糖醋酸水溶液，并磁力搅拌 30 min。最后离心 20 min（2000 r/min），得到纳米微球。将制得的纳米微球洗涤 2 次，冷冻干燥（-40℃预凈 24 h），放入冷冻干燥机中，设置温度曲线为初始温度-40℃，6 h 后抽真空，以 5℃/h 的速度增到 35℃，恒温 3 h），即制得茶多酚/壳聚糖海藻酸钠纳米微球。

5）茶多酚标准曲线的绘制。配制质量浓度分别为 10, 20, 30, 40, 50, 70, 90, 100 μg/mL 的茶多酚溶液。将其与空白样在 547 nm 处进行紫外光谱扫描，测定不同质量浓度茶多酚溶液的吸光度（A）, 即得标准曲线。测得茶多酚溶液质量浓度（ρ）和吸光度（A）之间的关系，见图 1。线性回归方程为 $A = 0.01395ρ + 0.001167$，$R² = 0.99708$，线性较好。在后续的实验中，可以通过实验测定吸光度值，并按照茶多酚溶液的标准曲线来换算茶多酚的质量浓度。

6）样品溶液的制备及测定。取 30 mg 的载药微球，加入 10 mL 二氯甲烷，超声震荡处理 10 min，使茶多酚完全释放于溶液中，准确吸取 0.1 mL 上清液并用二氯甲烷定容至 10 mL，得待测溶液。用相同方式处理空白微球可得空白样。载药微球的载药率（γ）和包封率（η）的计算公式为：$γ = \frac{m_1 - m_2}{m_2} \times 100%$；

$\eta = \frac{m_1}{m_0} \times 100%$。其中 m_1 为纳米粒子中茶多酚质量；m_2 为纳米粒子的质量；m_0 为实际投入茶多酚质量。

7）体外药物释放度的测定。称取一定量纳米微球置于装有 200 mL 的 PBS 缓冲溶液的烧杯中，并在
恒温水浴锅中标准（100 r/min，37 ℃）。在不同时间点取 20 mL 溶液，并补入等量新鲜介质，在 547 nm 处检测样品吸光度，同时绘制茶多酚-时间的释放动力学曲线。释放度（θ）的计算公式为：θ = m / m0 ×100%。其中 m0 为某时间点药物积累释放量；m 为初始囊内理论总药量。

8）扫描电镜测试。将纳米微粒均匀撒在导电胶上，吹去表面的多余粉末，喷金后在扫描电镜上进行表面形貌分析。

9）激光粒度分析。对制备的纳米微粒乳液进行激光粒度分析，观察粒径分布。

2 结果与分析

2.1 单因素对纳米微球效果的影响

制备茶多酚/壳聚糖/海藻酸钠纳米微球的单因素水平实验。分别考察海藻酸钠溶液、壳聚糖溶液、CaCl2 溶液、茶多酚溶液质量浓度对纳米微球效果的影响。

2.1.1 海藻酸钠溶液质量浓度

分别采用 5、10、15、20 mg/mL 的海藻酸钠溶液制备纳米微球，其中壳聚糖溶液、CaCl2 溶液、茶多酚溶液的质量浓度分别为 20、15、0.8 mg/mL，使得结果见图 2。可见，纳米微球的载药率和包封率随着海藻酸钠质量浓度的增长呈先增长后降低的趋势，且载药率最大值为 22.03%，包封率最大值为512.20%。载药率和包封率降低的原因主要是当海藻酸钠质量浓度过高时，乳化效果变差。

2.1.2 壳聚糖溶液质量浓度

分别采用 5、10、15、20 mg/mL 的壳聚糖溶液制备纳米微球，其中海藻酸钠溶液、CaCl2 溶液、茶多酚溶液的质量浓度分别为 20、15、0.8 mg/mL，使得结果见图 3。纳米微球的载药率和包封率均随着壳聚糖溶液的质量浓度的增长呈先增长后降低的趋势，且载药率最大值为 21.34%，包封率最大值为 47.63%。此时壳聚糖溶液质量浓度为 10 mg/mL。造成此结果的原因在于当壳聚糖质量浓度过高时，与海藻酸钠发生反应的

图 3 壳聚糖溶液浓度的影响

Fig.3 The influence of chitosan solution concentration

2.1.3 CaCl2 溶液质量浓度

分别采用 5、10、15、20 mg/mL 的 CaCl2 溶液制备纳米微球，其中壳聚糖溶液、海藻酸钠溶液、茶多酚溶液的质量浓度分别为 20、15、0.8 mg/mL，使得结果见图 4。可见，纳米微球的载药率和包封率均随着 CaCl2 溶液质量浓度的增长呈先增长后降低的趋势，且载药率最大值为 19.79%，包封率最大值为 47.26%。此时壳聚糖溶液质量浓度为 15 mg/mL。当 CaCl2 浓度过高时，载药率和包封率反而降低的原因在于其与海藻酸钠溶液交联过度，造成纳米微球孔洞过小。

图 4 CaCl2 溶液浓度的影响

Fig.4 The influence of CaCl2 solution concentration

2.1.4 茶多酚溶液质量浓度

分别采用 0.4、0.6、0.8、1.0 mg/mL 的茶多酚溶液制备纳米微球，其中壳聚糖溶液、海藻酸钠溶液、CaCl2 溶液质量浓度为 20、15、15 mg/mL，使得结果见图 5。可见，纳米微球的载药率和包封率均随着茶多酚溶液质量浓度的增长呈先增长后降低的趋势，且载药率最大值为 21.38%，包封率最大值为 50.27%。此时茶多酚溶液质量浓度为 0.8 mg/mL，造成该结果的原因可能是茶多酚浓度过高使得纳米微球内部堵塞。

图 5 茶多酚浓度的影响

Fig.5 The influence of polyphenol concentration
2.2 正交实验结果分析

为找出纳米颗粒的最佳制备条件，进行正交试验，见表 1。正交试验表明，壳聚糖溶液和海藻酸钠溶液质量浓度对纳米微球的包封率和载药率影响最大，CaCl₂溶液质量浓度影响最小，影响程度大小依次为 B > A > D > C。由表 1 可知纳米微粒含量制备条件是 A₅B₃C₃D₂，即海藻酸钠溶液、壳聚糖溶液、CaCl₂溶液、茶多酚溶液质量浓度分别为 15, 10, 15, 0.8 mg/mL。

表 1 正交实验水平与因素

<table>
<thead>
<tr>
<th>实验号</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>载药率/%</th>
<th>包封率/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>20.11</td>
<td>48.17</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>21.67</td>
<td>50.13</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>22.12</td>
<td>51.67</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>25.03</td>
<td>56.05</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>20.08</td>
<td>47.71</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>26.78</td>
<td>57.12</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>16.36</td>
<td>39.43</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>24.86</td>
<td>54.39</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>19.77</td>
<td>46.72</td>
</tr>
</tbody>
</table>

\[K_1 = 21.30 \quad 23.92 \quad 21.68 \quad 20.50 \]

\[K_2 = 23.96 \quad 22.16 \quad 21.60 \quad 22.20 \]

\[K_3 = 20.33 \quad 19.52 \quad 22.31 \quad 22.89 \]

\[R = 3.63 \quad 4.40 \quad 0.70 \quad 2.39 \]

注：A 表示海藻酸钠溶液质量浓度，B 表示壳聚糖溶液质量浓度，C 表示CaCl₂溶液质量浓度，D 表示茶多酚溶液质量浓度，R 表示实验结果。

在最优制备条件下制得茶多酚/壳聚糖/海藻酸钠纳米微粒，得到最优工艺条件下的载药率为 22.71%，包封率为 61.38%。采用激光粒度分析仪对制备的纳米微球乳液进行测定，见图 6-7。可以看出，所得纳米微球的球形度较好，球粒径分布均匀，集中分布在 500 nm 左右。

根据测定结果绘制释放曲线，见图 8。茶多酚在 3 h 内的释放率达到 80%，3 h 后释放较缓慢，表明该纳米微粒有一定的缓释作用。药物在前 3 h 释放较快，主要来自于吸附在微球表面的茶多酚，随后溶剂通过微球间隙渗入球内，包封于微球中的茶多酚溶解于溶剂并从空隙中缓慢释放，从而达到缓释作用。

3 结语

当海藻酸钠溶液、壳聚糖溶液、CaCl₂溶液、茶多酚溶液质量浓度为 15, 10, 15, 0.8 mg/mL 时，该工艺为茶多酚/壳聚糖/海藻酸钠微球的最佳制备条件，此时载药率为 22.71%，包封率为 61.38%。茶多酚在 3 h 内释放率达到 80% 左右，3 h 后释放较缓慢，表明该纳米微粒有一定的缓释作用。纳米微粒粒径分布均匀，集中分布在 500 nm 左右，所得结果为制备缓释抗菌膜等在包装领域应用提供前期试验的基础与参考。

参考文献：

OU Li-juan, Li Li, YANG Hui, et al. Preservative Ef-

