文章摘要
李传浩,明振军,王国新,阎艳.支持开放式众包任务优化的强化学习决策方法[J].包装工程,2024,(24):40-47.
支持开放式众包任务优化的强化学习决策方法
Reinforcement Learning Decision-making Method Supporting Open Crowdsourcing Task Optimization
投稿时间:2024-07-12  
DOI:10.19554/j.cnki.1001-3563.2024.24.005
中文关键词: 众包  任务优化  自组织  强化学习
英文关键词: crowdsourcing  task optimization  self-organization  reinforcement learning
基金项目:国家自然科学基金(51805033)
作者单位
李传浩 北京理工大学北京 100081 
明振军 北京理工大学北京 100081
北京理工大学长三角研究院嘉兴浙江 嘉兴 314019 
王国新 北京理工大学北京 100081
北京理工大学长三角研究院嘉兴浙江 嘉兴 314019 
阎艳 北京理工大学北京 100081
北京理工大学长三角研究院嘉兴浙江 嘉兴 314019 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 针对开放式环境下个体自主决策易导致群体组织松散且无规划而造成的成本过高、任务超期等问题,研究基于强化学习的开放式众包任务优化。方法 首先,通过效用理论对个体选择是否参与任务及贡献模块的自组织决策行为进行分析与建模;然后,根据马尔科夫决策过程构建众包任务中的状态和动作,以缩短任务耗时与减少任务成本为优化目标设置奖励;最后,基于DDPG强化学习算法构建策略和价值网络对奖金、能力指数要求进行动态设置。结果 仿真实验结果显示,该方法能有效缩短任务耗时,减少成本支出,为开放式众包任务优化提供了一种有效方案。结论 使用深度强化学习方法,对众包中的奖金、能力指数要求进行动态智能调控,实现了任务耗时的缩短和任务成本的降低,为未来在复杂开放式环境中的众包决策提供了借鉴。
英文摘要:
      Aiming at the problems of loose group organization, high cost and overdue tasks caused by unplanned individual decision-making in open environments, the work aims to study the open crowdsourcing task optimization based on reinforcement learning. Firstly, the self-organizing decision-making behavior of individual selection whether to participate in the task and contribution module was analyzed and modeled by the utility theory. Then, according to the Markov decision process, the state and action in the crowdsourcing task were constructed, and the reward was set to shorten the task time and reduce the task cost. Finally, based on the DDPG reinforcement learning algorithm, the strategy and value network were constructed to dynamically set the bonus and ability index requirements. The simulation results showed that this method could effectively shorten the task time and reduce the cost, which provided an effective solution for open crowdsourcing task optimization. Using the deep reinforcement learning method to dynamically and intelligently regulate the bonus and capability index requirements in crowdsourcing realizes the shortening of task time and the reduction of task cost, and provides a reference for crowdsourcing decision-making in complex open environments in the future.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护

您是第23156029位访问者    渝ICP备15012534号-4

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023—68792836传真:023—68792396 Email: designartj@126.com

    

  
 

渝公网安备 50010702501717号