Review of Human-Robot Interaction Design for Remote Robot Control Terminals

GONG Xiaodong, GONG Qian, YANG Qian, GAO Jianchao, LIU Yushun

Packaging Engineering ›› 2025, Vol. 46 ›› Issue (12) : 1-12.

PDF(9186 KB)
PDF(9186 KB)
Packaging Engineering ›› 2025, Vol. 46 ›› Issue (12) : 1-12. DOI: 10.19554/j.cnki.1001-3563.2025.12.001
Special Subject: Intelligence-Infused Design, Synergistic Empo-werment

Review of Human-Robot Interaction Design for Remote Robot Control Terminals

  • GONG Xiaodong1,2,3, GONG Qian1,2*, YANG Qian1,3, GAO Jianchao1,3, LIU Yushun1,2
Author information +
History +

Abstract

The work aims to investigate the development status and future trends of human-robot interaction (HRI) design for remote robot terminals, so as to provide directions for expanding design research in this field. By reviewing recent studies in engineering psychology, human factors and ergonomics, human-robot interaction, and automatic control, three typical challenges faced by HRI design in remote control terminals were identified, including a decline in situational awareness due to the shift in operator roles, constrained perceptual channels caused by the physical separation between master and slave terminals, and asynchronous perception and control resulting from delays in information transmission, hindering the effective human-robot collaboration and the task execution. In response, the existing research and practices were summarized and analyzed across three dimensions of human-robot functional collaboration, enhancement of spatial and situational awareness, and improvement of interactive perception. Addressing the unique characteristics of remote control systems requires rethinking interface interaction design from the perspective of enhancing operators' perception and control. Future development should emphasize rational human-robot function allocation and the seamless integration of multi-sensory collaboration with intelligent technologies. This research offers design strategies and references for advancing terminal HRI design in remote robot control systems.

Key words

remote control robot / human-robot interaction / human-robot functional allocation / perceptual enhancement / interactive control enhancement

Cite this article

Download Citations
GONG Xiaodong, GONG Qian, YANG Qian, GAO Jianchao, LIU Yushun. Review of Human-Robot Interaction Design for Remote Robot Control Terminals[J]. Packaging Engineering. 2025, 46(12): 1-12 https://doi.org/10.19554/j.cnki.1001-3563.2025.12.001

References

[1] XU H, BORSON J E.The Future of Legal and Ethical Regulations for Autonomous Robotics[C]//Proceedings of the 2018 IEEE Workshop on Advanced Robotics and Its Social Impacts (Arso). Paris:IEEE, 2018: 97-98.
[2] O'SULLIVAN S, NEVEJANS N, ALLEN C, et al. Legal, Regulatory, and Ethical Frameworks for Development of standards in Artificial Intelligence (AI) and Autonomous Robotic surgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15(1): 1968.
[3] MONIRUZZAMAN M D, RASSAU A, CHAI D.Teleoperation Methods and Enhancement Techniques for Mobile Robots: A Comprehensive Survey[J]. Robotics and Autonomous Systems, 2022(150): 103973.
[4] 陈英龙, 宋甫俊, 张军豪, 等. 基于临场感的遥操作机器人共享控制研究综述[J]. 浙江大学学报(工学版), 2021, 55(5): 831-842.
CHEN Y L, SONG F J, ZHANG J H, et al A Review of Shared Control for Teleoperation Robots Based on Sense of Presence[J]. Journal of Zhejiang University (Engineering Science) 2021 55(5): 831-842
[5] SHERIDAN T B.Human-Robot Interaction[J]. Human Factors, 2016, 58(4): 525-532.
[6] SHERIDAN T B. Telerobotics, Automation,Human Supervisory Control[M]: Cambridge: The Mit Press, 1992: 393.
[7] 姜斌, 孙辛欣, 崔彤. 数字化单兵终端人机界面交互设计研究[J]. 包装工程, 2022, 43(18): 1-8.
JIANG B, SUN X X, CUI T, et al.Research on Human-Computer Interface Interaction Design of Digital Individual Soldier Terminals[J]. Packaging Engineering, 2022, 43(18): 1-8.
[8] 薛澄岐. 复杂信息系统人机交互数字界面设计方法及应用[M]. 南京: 东南大学出版社, 2015: 269.
XUE C Q.Complex Information System Human- Computer Interaction Digital Interface Design Methods and Applications[M]. Nanjing: Southeast University Press, 2015: 269.
[9] SICILIANO B, KHATIB O.Springer Handbook of Robotics[M]. Singapore: Springer Publishing Company, Incorporated, 2016.
[10] 李忆, 喻靓茹, 邱东. 人与人工智能协作模式综述[J]. 情报杂志, 2020(10): 137-143.
LI Y, YU L R, QIU D.A Review of Human-AI Collaboration Models[J]. Journal of Information, 2020(10): 137-143
[11] 夏晶, 郝翔, 刘琳涛, 等. 时域连续下遥操作机器人时延测试系统设计[J]. 仪表技术与传感器, 2024(7): 66-71.
XIA J, HAO X, LIU L T, et al.Design of a Time-delay Testing System for Teleoperation Robots in Time Domain Continuity[J]. Instrumentation Technology and Sensors, 2024(7): 66-71.
[12] 汤奇荣, 夏乾臣, 徐宸飞, 等. 面向空间机械臂的遥操作人-机交互系统设计[J]. 指挥与控制学报, 2022(3): 278-285.
TANG Q R, XIA Q C, XU C F, et al.Design of a Teleoperation Human-Machine Interaction System for Space Manipulators[J]. Journal of Command and Control, 2022(3): 278-285.
[13] ZHENG C, WANG K, GAO S, et al.Design of Multi-modal Feedback Channel of Human-robot Cognitive Interface for Teleoperation in Manufacturing[J]. Journal of Intelligent Manufacturing, 2024(10):2-10.
[14] 杨赓, 周慧颖, 王柏村. 数字孪生驱动的智能人机协作: 理论、技术与应用[J]. 机械工程学报, 2022(18): 279-291.
YANG G, ZHOU H Y, WANG B C.Digital Twin-Driven Intelligent Human-Machine Collaboration: Theory, Technology and Application[J]. Journal of Mechanical Engineering, 2022(18): 279-291.
[15] 张诚, 胡楚文, 罗振豪, 等. 棚电式智能拖拉机远程操控界面注意力响应特性与优化设计[J]. 农业机械学报, 2024(增刊1): 392-404.
ZHANG C, HU C W, LUO Z H, et al.Attention Response Characteristics and Optimization Design of Remote Control Interface for Shed-Electric Intelligent Tractor. Transactions of the Chinese Society for Agricultural Machinery, 2024(Sup.1): 392-404.
[16] ENDSLEY M R, KIRIS E O.The Out-of-the-Loop Performance Problem and Level of Control in Automation[J]. Hum Factors, 1995, 37(2): 381-394.
[17] ZEEB K, BUCHNER A, SCHRAUF M, et al.What Determines the Take-over Time? An Integrated Model Approach of Driver Take-over after Automated Driving[J]. Accident Analysis & Prevention, 2015(78): 212-221.
[18] ENDSLEY M R.Toward a Theory of Situation Awareness in Dynamic Systems[J]. Hum Factors, 1995, 37(1): 32-64.
[19] 孙倩, 郑琳铄, 贾英民. 面向在轨捕获的空间机器人路径规划与控制综述[J]. 工程科学学报, 2025(4): 753-767.
SUN Q, ZHENG L S, JIA Y M.Review on Path Planning and Control for Space Robots in On-Orbit Capture[J]. Journal of Engineering Science, 2025(4): 753-767.
[20] LUO J, HE W, YANG C G, et al.Combined Perception, Control, and Learning for Teleoperation: Key Technologies, Applications, and Challenges[J]. Cognitive Computation and Systems, 2020, 2(2): 33-43.
[21] LENZ C, BEHNKE S.Bimanual Telemanipulation with Force and Haptic Feedback through an Anthropomorphic Avatar System[J]. Robotics and Autonomous Systems, 2023(161): 104338.
[22] SHERIDAN T B.Space teleoperation through time delay: review and prognosis[J]. Ieee Transactions on Robotics and Automation, 1993, 9(5): 592-606.
[23] LIVATION S, GUASTELLA D C, MUSCATO G, et al.Intuitive Robot Teleoperation Through Multi-Sensor Informed Mixed Reality Visual Aids[J]. Ieee Access, 2021, 9: 25795-25808.
[24] 李静, 董星, 曾健友. 船舶推进监控系统终端显示界面交互设计方法[J]. 舰船科学技术, 2021, 43(14): 109-111.
LI J, DONG X, ZENG J Y.Interactive Design Method of Terminal Display Interface for Ship Propulsion Monitoring System[J]. Ship Science and Technology, 2021, 43(14): 109-111.
[25] 邵将,马国萍, 陈志勇, 等. 人机协同背景下农用无人机作业控制界面交互设计研究[J]. 包装工程, 2025, 46(04): 49-59.
SHAO J, MA G P, CHEN Z Y, et al.Interactive Design of Operation Control Interface for Agricultural UAVs Under Human-Machine Collaboration. Packaging Engineering, 2025, 46(4): 49-59.
[26] PARASURAMAN R, SHERIDAN T B, WICKENS C D.A model for types and levels of human interaction with automation[J]. Ieee Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2000, 30(3): 286-297.
[27] FITTS P M. Human engineering for an effective air-navigation and traffic-control system.[M]: National Research Council, Div. of, 1951: xxii, 84-xxii, 84.
[28] SHERIDAN T B, VERPLANK W L, BROOKS T L, et al.Human and Computer Control of Undersea Teleoperators[J]. Human & Computer Control of Undersea Teleoperators, 1978. DOI:10.21236/ada057655.
[29] ENDSLEY M R, KABER D B.Level of automation effects on performance, situation awareness and workload in a dynamic control task[J]. Ergonomics, 1999, 42(3): 462-492.
[30] 汽车驾驶自动化分级: GB/T 40429-2021[S]: 国内-国家标准-国家市场监督管理总局CN-GB.
Classification of Driving Automation for Automobiles: GB/T 40429-2021[S]. China-State Standards: State Administration for Market Regulation CN-GB.
[31] NICORA M L, AMBROSETTL R, WIENS G J, et al.Human-Robot Collaboration in Smart Manufacturing: Robot Reactive Behavior Intelligence[J]. Journal of Manufacturing Science and Engineering-transactions of the Asme, 2021, 143(3): 31009.
[32] 刘伟. 《人机环境系统智能:超越人机融合》[J]. 科学·经济·社会, 2025, (01): 125.
LIU W.Human-Machine-Environment System Intelligence: Beyond Human-Machine Integration[J]. Science Economy and Society, 2025(1): 125.
[33] 崔波, 王崴, 瞿珏, 等. 无人机地面站自适应人机功能分配机制探讨[J]. 飞航导弹, 2016, (4): 52-54+88.
CUI B, WANG W, QU J, et al. Discussion on Adaptive Human-Machine Function Allocation Mechanism of UAV Ground Station[J]. Winged Missile Journal, 2016(4): 52-54+88.
[34] MALVANKAR-MEHTA M S, MEHTA S S. Optimal task allocation in multi-human multi-robot interaction[J]. Optimization Letters, 2015, 9(8): 1787-1803.
[35] 宋晓蕾, 田珍珍, 董梅梅. 智能交互系统中人机组队协同工效提升的模型构建_宋晓蕾[J]. 包装工程, 2023, 44(20): 8-17+517.
SONG X L, TIAN Z Z, DONG M M, et al.Model Construction for Improving Teaming Efficiency in Human-Machine Collaborative Intelligent Interaction Systems[J]. Packaging Engineering, 2023, 44(20): 8-17.
[36] Dellermann D, Ebel P, Söllner M, et al.Hybrid Intelligence[J]. Business & Information Systems Engineering, 2019, 61(5): 637-643.
[37] 黄海丰, 刘培森, 李擎, 等. 协作机器人智能控制与人机交互研究综述[J]. 工程科学学报, 2022, 44(04): 780-791.
HUANG H F, LIU P S, LI Q, et al.A Review of Intelligent Control and Human-Machine Interaction in Collaborative Robots[J]. Journal of Engineering Science, 2022, 44(4): 780-791.
[38] SCHMIDBAUER C, ZAFARI S, HADER B, et al.An Empirical Study on Workers' Preferences in Human-Robot Task Assignment in Industrial Assembly Systems[J]. Ieee Transactions on Human-machine Systems, 2023, 53(2): 293-302.
[39] GUALTIERI L, RAUCH E, VIDONI R.Human-robot activity allocation algorithm for the redesign of manual assembly systems into human-robot collaborative assembly[J]. International Journal of Computer Integrated Manufacturing, 2023, 36(2): 308-333.
[40] SAEIDI H, WANG Y.Incorporating Trust and Self- Confidence Analysis in the Guidance and Control of (Semi)Autonomous Mobile Robotic Systems[J]. Ieee Robotics and Automation Letters, 2019, 4(2): 239-246.
[41] 王皓, 陈根良. 机器人型装备在航空装配中的应用现状与研究展望[J]. 航空学报, 2022, 43(05): 49-71.
WANG H, CHEN G L.Application Status and Research Prospects of Robot-Type Equipment in Aircraft Assembly[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 49-71.
[42] YANG Y W, LI Z J, SHI P, et al.Fuzzy-Based Control for Multiple Tasks With Human-Robot Interaction[J]. Ieee Transactions on Fuzzy Systems, 2024, 32(10): 5802-5814.
[43] GROSS S, KRENN B.A Communicative Perspective on Human-Robot Collaboration in Industry: Mapping Communicative Modes on Collaborative Scenarios[J]. International Journal of Social Robotics, 2024, 16(6): 1315-1332.
[44] 王兴华, 田宇. 一种基于行为的自主/遥控水下机器人共享控制方法[J]. 舰船科学技术, 2020, (01): 95-100.
WANG X H, TIAN Y.A Behavior-Based Shared Control Method for Autonomous/Remote Underwater Robots[J]. Ship Science and Technology, 2020(1): 95-100.
[45] PAUL S.Army of None: Autonomous Weapons and the Future of War[M]: W. W. Norton \& Company, 2018.
[46] WANG C, CHEN X J, KNIERIM J J.Egocentric and allocentric representations of space in the rodent brain[J]. Current Opinion in Neurobiology, 2020, 60: 12-20.
[47] THATIPELLI A, LO S Y, ROY-CHOWDHURY A K. et al. Egocentric and exocentric methods: A short survey[J]. Computer Vision and Image Understanding, 2025, 257: 104371.
[48] BICANSKI A, BURGESS N.Neuronal vector coding in spatial cognition[J]. Nature Reviews Neuroscience, 2020, 21(9): 453-470.
[49] FREKSA C, HABEL C, WENDER K F. Spatial Cognition, An Interdisciplinary Approach to Representing and Processing Spatial Knowledge[C], Berlin, Heidelberg: Springer-verlag, 1998.
[50] Deep Trekker. The Revolution NAV's handheld controller interface[EB/OL](2020-12-8)[2025-4-27]. https://newatlas.com/marine/deep-trekker-revolution-nav-rov/#gallery:1.
[51] LI K, BACHER R, SCHMIDT S, et al.Reality Fusion: Robust Real-time Immersive Mobile Robot Teleoperation with Volumetric Visual Data Fusion[C]//2024 Ieee/rsj International Conference on Intelligent Robots and Systems (iros): Ieee, 14: 8982-8989.
[52] JANGIR R, HANSEN N, GHOSAL S, et al.Look Closer: Bridging Egocentric and Third-Person Views With Transformers for Robotic Manipulation[J]. Ieee Robotics and Automation Letters, 2022, 7(2): 3046-3053.
[53] ABDULLAH A, CHEN R, REKLEITIS I, et al. Ego-to-Exo: Interfacing Third Person Visuals from Egocentric Views in Real-time for Improved ROV Teleoperation[J]. Arxiv, 2024, abs/2407.00848.
[54] CHAE Y, GUPTA S, HAM Y, et al.Divergent effects of visual interfaces on teleoperation for challenging jobsite environments[J]. Automation in Construction, 2024, 167: 105683.
[55] NAIK M A, KUMAR A, KUSHWAHA D K, et al. Development of a Telerobotic Target‐Specific Pesticide Applicator: An Intervention for Enhanced Safety and Efficiency[J]. Journal of Field Robotics, 2025. https://doi.org/10.1002/rob.22524.
[56] YOUNG S N, LANCILOTI R J, PESCHEL J M.et al.The Effects of Interface Views on Performing Aerial Telemanipulation Tasks Using Small UAVs[J]. International Journal of Social Robotics, 2022, 14(1): 213-228.
[57] Koolen T, Smith J, Thomas G, et al.Summary of Team IHMC's virtual robotics challenge entry[C]//2013 13th Ieee-ras International Conference on Humanoid Robots (humanoids): Ieee, 15: 307-314.
[58] HE M Y.The ground control system developed by U.S.-based Shield AI for the V-BAT vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV)[Z]. Photographed at the Abu Dhabi International Defence Exhibition, February 20, 2025.
[59] Canadian Space Agency. The display and control terminal of Canadarm2, the robotic arm on the International Space Station (Canada)[EB/OL](2009-9-23)[2025- 4-27]. https://www.asc-csa.gc.ca/eng/multimedia/search/image/1777?search=Canadarm%202.
[60] 苏翎菲, 化永朝, 董希旺, 等. 人与无人机集群多模态智能交互方法[J]. 航空学报, 2022, 43(S1): 129-142.
SU L F, HUA Y C, DONG X W, et al.Multimodal Intelligent Interaction Methods Between Humans and UAV Swarms[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 129-142.
[61] 卢珊珊, 王明, 李哲. 基于WPF的3D雷达终端界面设计[J]. 火控雷达技术, 2023, 52(03): 146-150.
LU S S, WANG M, LI Z.Design of 3D Radar Terminal Interface Based on WPF[J]. Fire Control Radar Technology, 2023, 52(3): 146-150.
[62] PONCEL A, GALLARDO-ESTRELLA L.Command- based voice teleoperation of a mobile robot via a human-robot interface[J]. Robotica, 2015, 33(1): 1-18.
[63] 冀瑞国. 神经网络在语音识别中的应用[J]. 电子技术与软件工程, 2019, (3): 249.
JI R G.Application of Neural Networks in Speech Recognition[J]. Electronic Technology & Software Engineering, 2019(3): 249.
[64] 潘奇, 杨东华, 蔡委哲. 自然人机交互技术在雷达显控终端中的应用[J]. 现代雷达, 2024, 46(08): 78-83.
PAN Q, YANG D H, CAI W Z.Application of Natural Human-Computer Interaction Technology in Radar Display and Control Terminal[J]. Modern Radar, 2024, 46(8): 78-83.
[65] 张欣悦, 吴晓莉, 王名珺, 等. 有/无人机协同操作界面的最佳交互方式评估[J]. 系统工程与电子技术, 2025: 1-15.
ZHANG X Y, WU X L, WANG M J, et al.Evaluation of Optimal Interaction Modes for Manned/Unmanned Aerial Vehicle Cooperative Operation Interfaces[J]. Systems Engineering and Electronics, 2025: 1-15.
[66] 易润泽,李会军,宋爱国. 基于多传感器的机器人遥操作人机交互系统[J]. 测控技术, 2018, 37(9): 56-59.
YI R Z, LI H J, SONG A G.Multi-Sensor Based Robot Teleoperation Human-Computer Interaction System[J]. Measurement & Control Technology, 2018, 37(9): 56-59.
[67] MENDES N.Surface Electromyography Signal Recognition Based on Deep Learning for Human-Robot Interaction and Collaboration[J]. Journal of Intelligent & Robotic Systems, 2022, 105(2): 42.
[68] XIE J N, XU Z, ZENG J Y, et al.Human-Robot Interaction Using Dynamic Hand Gesture for Teleoperation of Quadruped Robots with a Robotic Arm[J]. Electronics, 2025, 14(5): 860.
[69] BECKER N,SOVAILO K, ZHU C Y, et al. Integrating and Evaluating Visuo-tactile Sensing with Haptic Feedback for Teleoperated Robot Manipulation[J]. Arxiv Preprint Arxiv:2404.19585, 2024. https://arxiv.org/abs/2404.19585.
[70] MALIK H A, RASOOL S, MAQSOOD A, et al.Effect of Haptic Feedback on Pilot/Operator Performance During Flight Simulation[J]. Applied Sciences-basel, 2020, 10(11): 3877.
[71] YIN X C, GOU S X, XIAO N, et al.Safety Operation Consciousness Realization of a MR Fluids-Based Novel Haptic Interface for Teleoperated Catheter Minimally Invasive Neurosurgery[J]. Ieee-asme Transactions on Mechatronics, 2016, 21(2): 1043-1054.
[72] TRINITATOVA D, TSETSERUKOU D.Study of the Effectiveness of a Wearable Haptic Interface With Cutaneous and Vibrotactile Feedback for VR-Based Teleoperation[J]. Ieee Transactions on Haptics, 2023, 16(4): 463-469.
[73] TORIELLI D, MURATORE L, LAURENZI A, et al.TelePhysicalOperation: Remote Robot Control Based on a Virtual "Marionette" Type Interaction Interface[J]. Ieee Robotics and Automation Letters, 2022, 7(2): 2479-2486.
[74] Renown Health. The Future of Surgery: Meet Renown's Newest da Vinci 5 Robot[EB/OL](2025-1-25)[2025-4- 27]. https://www.youtube.com/watch?v=5voQfQOTem8.
[75] LIU Y, TSAI Y Y, HUANG B D, et al.Virtual Reality Based Tactile Sensing Enhancements for Bilateral Teleoperation System With In-Hand Manipulation[J]. Ieee Robotics and Automation Letters, 2022, 7(3): 6998-7005.
[76] XIAO J H, WANG P, LU H M, et al.A three-dimensional mapping and virtual reality-based human-robot interaction for collaborative space exploration[J]. International Journal of Advanced Robotic Systems, 2020, 17(3): 1729881420925293.
[77] WU Y, ZHAO B, LI Q.The Teleoperation of Robot Arms by Interacting with an Object's Digital Twin in a Mixed Reality Environment[J]. Applied Sciences-basel, 2025, 15(7): 3549.
[78] 吴永慧. 基于虚拟现实的无人机三维可视化技术与实现[J]. 卫星电视与宽带多媒体, 2019, (14): 33-34.
WU Y H.3D Visualization Technology and Implementation of UAV Based on Virtual Reality[J]. Satellite TV & Broadband Multimedia, 2019, (14): 33-34.
[79] 王晓卫,李维宝,孟越. 基于虚拟现实的无人机智能监控系统综述[J]. 飞航导弹, 2020, (4): 26-29+51.
WANG X W, LI W B, MENG Y. Review of UAV Intelligent Monitoring System Based on Virtual Reality[J]. Aviation & Missile, 2020, (4): 26-29+51.
[80] GICHANE M M, BYIRINGIRO J B, BENOUSSAAD M, et al.Human-Centric Framework for Robotic Assembly for Industry of the Future[J]. International Journal of Precision Engineering and Manufacturing, 2024, 26: 1167-1185.
[81] ESAKI H, SEKIYAMA K.Immersive Robot Teleoperation Based on User Gestures in Mixed Reality Space[J]. Sensors, 2024, 24(15): 5073.
[82] SU Y P, CHEN X Q, ZHOU T, et al.Mixed-Reality- Enhanced Human-Robot Interaction with an Imitation- Based Mapping Approach for Intuitive Teleoperation of a Robotic Arm-Hand System[J]. Applied Sciences-basel, 2022, 12(9): 4740.
[83] SU Y P, CHEN X Q, ZHOU T, et al.Mixed reality-integrated 3D/2D vision mapping for intuitive teleoperation of mobile manipulator[J]. Robotics and Computer-integrated Manufacturing, 2022, 77: 102332.
[84] WANG X C, GUO S Q, XU Z J, et al.A Robotic Teleoperation System Enhanced by Augmented Reality for Natural Human-Robot Interaction[J]. Cyborg and Bionic Systems, 2024, 5: 1-12.
[85] SU Y P, CHEN X Q, ZHOU C, et al.Integrating Virtual, Mixed, and Augmented Reality into Remote Robotic Applications: A Brief Review of Extended Reality-Enhanced Robotic Systems for Intuitive Telemanipulation and Telemanufacturing Tasks in Hazardous Conditions[J]. Applied Sciences-basel, 2023, 13(22): 12129.
[86] FAN W, GUO X Q, FENG E Y, et al.Digital Twin-Driven Mixed Reality Framework for Immersive Teleoperation With Haptic Rendering[J]. Ieee Robotics and Automation Letters, 2023, 8(12): 8494-8501.
[87] RAJ S, BERI N, PATEL D S, et al.HaM3D: generalized XR-based multimodal HRI framework with haptic feedback for industry 4.0[J]. Journal on Multimodal User Interfaces, 2024, 18(4): 331-349.
[88] DU G L, HAN R.G, YAO G C, et al. A Gesture- and Speech-Guided Robot Teleoperation Method Based on Mobile Interaction With Unrestricted Force Feedback[J]. Ieee-asme Transactions on Mechatronics, 2022, 27(1): 360-371.
PDF(9186 KB)

Accesses

Citation

Detail

Sections
Recommended

/