Literature Review on Design of Mobile Robots

QIAN Xiaosong, ZHAN Jiuding, MA Jin, DOU Jinhua

Packaging Engineering ›› 2025, Vol. 46 ›› Issue (12) : 13-39.

PDF(16523 KB)
PDF(16523 KB)
Packaging Engineering ›› 2025, Vol. 46 ›› Issue (12) : 13-39. DOI: 10.19554/j.cnki.1001-3563.2025.12.002
Special Subject: Intelligence-Infused Design, Synergistic Empo-werment

Literature Review on Design of Mobile Robots

  • QIAN Xiaosong1, ZHAN Jiuding1, MA Jin2, DOU Jinhua1*
Author information +
History +

Abstract

The work aims to systematically sort out its current research status and cutting-edge hotspots, analyze the evolution logic of morphological evolution and motion mechanisms, and provide theoretical references for technological innovation and application expansion of mobile robots. Bibliometric methods and CiteSpace were employed to conduct a visual analysis on scientific knowledge maps based on the Web of Science (WOS) and China National Knowledge Infrastructure (CNKI) databases. A classification framework of "operational environment-locomotion mechanism" was constructed to facilitate comparative research on different types of mobile robots. Through literature retrieval and analysis as well as case analysis, seven core design trends of mobile robots were identified, providing a theoretical basis for future functional upgrades and design iterations of mobile robots. In conclusion, mobile robots show a diversified evolution trend in terms of functions and forms, enabling them to gradually develop from single-function carriers into complex systems that can deeply cover application scenarios such as industrial manufacturing, security inspection, and emergency disaster relief. As a representative of new quality productivity, mobile robots will not only help to restructure the production operation mode and safety guarantee system, but also become a key driving force for promoting the intelligent upgrade of the manufacturing industry and the modernization transformation of social governance, injecting strong impetus into the high-quality development of China's economy and society.

Key words

mobile robots / operational environment / locomotion mechanism / design trends

Cite this article

Download Citations
QIAN Xiaosong, ZHAN Jiuding, MA Jin, DOU Jinhua. Literature Review on Design of Mobile Robots[J]. Packaging Engineering. 2025, 46(12): 13-39 https://doi.org/10.19554/j.cnki.1001-3563.2025.12.002

References

[1] ZHU K, ZHANG T.Deep Reinforcement Learning Based Mobile Robot Navigation: a Review[J]. Tsinghua Science and Technology, 2021, 26(5): 674-691.
[2] RUBIO F, VALERO F, LLOPIS-ALBERT C.A Review of Mobile Robots: Concepts, Methods, Theoretical Framework, and Applications[J]. International Journal of Advanced Robotic Systems, 2019, 16(2): 1-22.
[3] 田野, 陈宏巍, 王法胜, 等. 室内移动机器人的SLAM算法综述[J]. 计算机科学, 2021, 48(9): 223-234.
TIAN Y, CHEN H W, WANG F S, et al.Overview of SLAM Algorithms for Mobile Robots[J]. Computer Science, 2021, 48(9): 223-234.
[4] INKULU A K, BAHUBALENDRUNI M V A R, DARA A, et al. Challenges and Opportunities in Human Robot Collaboration Context of Industry 4.0-a State of the Art Review[J]. Industrial Robot: the International Journal of Robotics Research and Application, 2022, 49(2): 226-239.
[5] 曹风魁, 庄严, 闫飞, 等. 移动机器人长期自主环境适应研究进展和展望[J]. 自动化学报, 2020, 46(2): 205-221.
CAO F, ZHUANG Y, YAN F, et al.Long-term Autonomous Environment Adaptation of Mobile Robots: State-of-the-art Methods and Prospects[J]. Acta Automatica Sinica, 2020, 46(2): 205-221.
[6] 翟敬梅, 李连中, 郭培森, 等. 多机器人智能协同作业M2M2A系统设计与实验研究[J]. 机器人, 2017, 39(4): 415-422.
ZHAI J M, LI L Z, GUO P S.Design and Experiment on M2M2A of Multi-robot Intelligent Collaboration[J]. Robot, 2017, 39(4): 415-422.
[7] LIN S, LIU A, WANG J, et al.An Intelligence-based Hybrid PSO-SA for Mobile Robot Path Planning in Warehouse[J]. Journal of Computational Science, 2023(67): 1-11.
[8] 雷斌, 金彦彤, 王致诚, 等. 仓储物流机器人技术现状与发展[J]. 现代制造工程, 2021(12): 143-153.
LEI B, JIN Y T, WANG Z C, et al.The Technology Statues and Trend of Warehouse Logistics Robot[J]. Modern Manufacturing Engineering, 2021(12): 143-153.
[9] 鲁守银, 张营, 李建祥, 等. 移动机器人在高压变电站中的应用[J]. 高电压技术, 2017, 43(1): 276-284.
LU S Y, ZHANG Y, LI J X, et al.Application of Mobile Robot in High Voltage Substation[J]. High Voltage Engineering, 2017, 43(1): 276-284.
[10] 陈慧岩, 张玉. 军用地面无人机动平台技术发展综述[J]. 兵工学报, 2014, 35(10): 1696-1706.
CHEN H Y, ZHANG Y.An Overview of Research on Military Unmanned Ground Vehicles[J]. Binggong Xuebao/Acta Armamentarii, 2014, 35(10): 1696-1706.
[11] 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015,33(2): 242-253.
CHEN Y, CHEN C M, LIU Z Y, et al.The Methodology Function of CiteSpace Mapping Knowledge Domains[J]. Studies in Science of Science, 2015, 33(2): 242-253.
[12] DEMETRIOU G A.Mobile Robotics in Education and Research[J]. Mobile Robots-current Trends, 2011(27): 48.
[13] YOUSSEF A A, EL KHOREBY M A, ISSA H H, et al. Brief Survey On Industry 4.0 Warehouse Management Systems[J]. International Review on Modelling and Simulations, 2022, 15(5): 340-350.
[14] LYTRIDIS C, PACHIDIS T.Recent Advances in Agricultural Robots for Automated Weeding[J]. AgriEngineering, 2024, 6(3): 3279-3296.
[15] DAI Y, WANG J.Co-evolving Embodied Intelligence with Design for Artificial Intelligence Architecture[J]. Nature Reviews Electrical Engineering, 2025(2): 149-150.
[16] GROS J, ZATYAGOV D, PAPA M, et al.Unlocking the Benefits of Mobile Manipulators for Small and Medium-Sized Enterprises: A Comprehensive Study[J]. Procedia CIRP, 2023(120): 1339-1344.
[17] LENG J, MOU H, TANG J, et al.Design, Modeling, and Control of a New Multi-motion Mobile Robot Based on Spoked Mecanum Wheels[J]. Biomimetics, 2023, 8(2): 183.
[18] HERTIG L, SCHINDLER D, BLOESCH M, et al.Unified State Estimation for a Ballbot[C]//Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2013: 2471-2476
[19] CHANG W J, CHANG C L, HO J H, et al.Design and Implementation of a Novel Spherical Robot with Rolling and Leaping Capability[J]. Mechanism and Machine Theory, 2022(171): 104747.
[20] SPIEGEL S, SUN J, ZHAO J.A Shape-changing Wheeling and Jumping Robot Using Tensegrity Wheels and Bistable Mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(4): 2073-2082.
[21] QIN Z, SONG J, GONG X, et al.VWDER: a Variable Wheel-Diameter Ellipsoidal Robot[C]//Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA). Berlin: IEEE, 2024: 13522-13528
[22] 陈淑艳, 陈文家. 履带式移动机器人研究综述[J]. 机电工程, 2007(12): 109-112.
CHEN S Y, CHEN W J.Review of Tracked Mobile Robots[J]. Mechanical and Electrical Engineering Magazine, 2007(12): 109-112.
[23] XIN L, BIN D.The Latest Status and Development Trends of Military Unmanned Ground vehicles[C]//Proceedings of the 2013 Chinese automation congress. Paris: IEEE, 2013: 533-537
[24] WELLS P, DEGUIRE D.TALON: A Universal Unmanned Ground Vehicle Platform, Enabling the Mission to Be the Focus[C]//Proceedings of the Unmanned Ground Vehicle Technology VII. Orlando: SPIE, 2005: 747-757.
[25] LIM K, HAN S, RYU S, et al.Track-linkage-based Compliant Robot for High Obstacle Overcoming Capability with Stable Motion[J]. IEEE/ASME Transactions on Mechatronics, 2024(1): 1-12.
[26] BAI R, NIU R, WANG J, et al.Adaptive Robust Autonomous Obstacle Traversal Controller for Novel Six-Track Robot[J]. Machines, 2023, 11(3): 378.
[27] YAMAUCHI B M.PackBot: a Versatile Platform for Military Robotics[C]//Unmanned Ground Vehicle Technology VI. Orlando: SPIE, 2004: 228-237.
[28] GAO F, FAN J, ZHANG L, et al.Magnetic Crawler Climbing Detection Robot Basing on Metal Magnetic Memory Testing Technology[J]. Robotics and Autonomous Systems, 2020(125): 1-13.
[29] NODEHI S E, BRUZZONE L, FANGHELLA P.SnakeTrack, A Bio-inspired, Single Track Mobile Robot with Compliant Vertebral Column for Surveillance and Inspection[C]//Proceedings of the International Conference on Robotics in Alpe-Adria Danube Region. Cham: Springer International Publishing, 2022: 513-520.
[30] XU R, LIU C.Tracked Robot with Underactuated Tension-driven RRP Transformable Mechanism: Ideas and Design[J]. Frontiers of Mechanical Engineering, 2024, 19(1): 4.
[31] LIU X, SUN Y, WEN S, et al.Development of Wheel-Legged Biped Robots: A Review[J]. Journal of Bionic Engineering, 2024, 21(2): 607-634.
[32] NONAMI K, BARAI R K, IRAWAN A, et al.Historical and Modern Perspective of Walking Robots[J]. Hydraulically Actuated Hexapod Robots: Design, Implementation and Control, 2014(66): 19-40.
[33] LIM H O, TAKANISHI A.Biped Walking Robots Created at Waseda University: WL and WABIAN Family[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1850): 49-64.
[34] SEOK S, WANG A, CHUAH M Y, et al.Design Principles for Energy-efficient Legged Locomotion and Implementation on the MIT Cheetah Robot[J]. IEEE/ASME Transactions on Mechatronics, 2014, 20(3): 1117-1129.
[35] RAIBERT M, BLANKESPOOR K, NELSON G, et al.Bigdog, the Rough-terrain Quadruped Robot[J]. IFAC Proceedings Volumes, 2008, 41(2): 10822-10825.
[36] MALIK A A, MASOOD T, BREM A.Intelligent Humanoid Robots in Manufacturing[C]//Proceedings of the Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction. Boulder: ACM, 2024: 20-27
[37] SHENG Q, ZHOU Z, LI J, et al.A Comprehensive Review of Humanoid Robots[J]. SmartBot, 2025, 1(1): 1-35.
[38] GRAICHEN K, HENTZELT S, HILDEBRANDT A, et al.Control Design for a Bionic Kangaroo[J]. Control Engineering Practice, 2015(42): 106-117.
[39] SHI Q, GAO J, WANG S, et al.Development of a Small-sized Quadruped Robotic Rat Capable of Multimodal Motions[J]. IEEE Transactions on Robotics, 2022, 38(5): 3027-3043.
[40] BRODOLINE I, SAUVAGEOT E, VIOLLET S, et al.Shaping the Energy Curves of a Servomotor-based Hexapod Robot[J]. Scientific Reports, 2024, 14(1): 11675.
[41] ZHAO Y, GAO F, SUN Q, et al.Terrain Classification and Adaptive Locomotion for a Hexapod Robot Qingzhui[J]. Frontiers of Mechanical Engineering, 2021, 16(2): 271-284.
[42] SUN H, WEI C, YAO Y A, et al.Analysis and Experiment of a Bioinspired Multimode Octopod Robot[J]. Chinese Journal of Mechanical Engineering, 2023, 36(1): 142.
[43] OKAJIMA T, ITO K.Multi-legged Robot SHINAYAKA-L VII: Transformation between Centipede form and Cylindrical Form[C]//Proceedings of the 2024 IEEE/SICE International Symposium on System Integration (SII). Paris: IEEE, 2024: 1-6
[44] KIM Y G, KWAK J H, HONG D H, et al.Autonomous Terrain Adaptation and User-friendly Tele-operation of Wheel-track Hybrid Mobile Robot[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(10): 1781-1788.
[45] 张硕, 姚建涛, 许允斗, 等. 形态可重构移动机器人行走机构设计与分析[J]. 农业机械学报, 2019, 50(8): 418-426.
ZHANG S, YAO J T, XU Y D, et al.Design and Analysis of Moving Mechanism of Shape Reconfigurable Mobile Robot[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019(50): 418-426.
[46] CHEN Z, WANG S, WANG J, et al.Control Strategy of Stable Walking for a Hexapod Wheel-legged Robot[J]. ISA Transactions, 2021(108): 367-380.
[47] RANJAN A, IOTTI F, ANGELINI F, et al.TraQuad: A Modular Tracked Legged Multimodal Quadrupedal Robot[J]. IEEE/ASME Transactions on Mechatronics, 2025(1): 1-13.
[48] GUO W, QIU J, XU X, et al.Talbot: A Track-leg Transformable Robot[J]. Sensors, 2022, 22(4): 1470.
[49] BRUZZONE L, NODEHI S E, FANGHELLA P.WheTLHLoc 4W: Small‐scale Inspection Ground Mobile Robot with Two Tracks, Two Rotating Legs, and Four Wheels[J]. Journal of Field Robotics, 2024, 41(4): 1146-1166.
[50] LUO Z, SHANG J, WEI G, et al.A Reconfigurable Hybrid Wheel-track Mobile Robot Based on Watt II Six-bar Linkage[J]. Mechanism and Machine Theory, 2018(128): 16-32.
[51] BELLINGHAM J G, RAJAN K.Robotics in Remote and Hostile Environments[J]. Science, 2007, 318(5853): 1098-1102.
[52] WHITCOMB L L, YOERGER D R. A New Distributed Real-time Control System for the Jason underwater robot[C]//Proceedings of1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'93). Paris: IEEE, 1993(1): 368-374.
[53] MANLEY J E, HALPIN S, RADFORD N, et al.Aquanaut: A New Tool for Subsea Inspection and Intervention[C]//Proceedings of the OCEANS 2018 MTS/IEEE Charleston. New York: IEEE, 2018: 1-4.
[54] ZHOU J, SI Y, CHEN Y.A Review of Subsea AUV Technology[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1119.
[55] 戴天娇. 中国无人潜水器跨入深渊和极地科考新阶段[J]. 科学, 2021, 73(6): 39.
DAI T J.China's Unmanned Submersibles Enter a New Stage of Deep-sea and Polar Expeditions[J]. Science, 2021, 73(6): 39.
[56] YANG Z, CHEN D, LEVINE D J, et al.Origami-inspired Robot That Swims Via Jet Propulsion[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7145-7152.
[57] ZHOU X, LI K, LIU Y, et al.Development of an Antihydropressure Miniature Underwater Robot with Multilocomotion Mode Using Piezoelectric Pulsed-jet Actuator[J]. IEEE Transactions on Industrial Electronics, 2022, 70(5): 5044-5054.
[58] TOLKOFF S W.Robotics and Power Measurements of the RoboTuna[D]. Cambridge: Massachusetts Institute of Technology, 1999.
[59] LOW K H, ZHOU C, SEET G, et al.Improvement and Testing of a Robotic Manta Ray (RoMan-III)[C]//Proceedings of the 2011 IEEE international Conference on Robotics and Biomimetics. New York: IEEE, 2011: 1730-1735
[60] KATZSCHMANN R K, DELPRETO J, MACCURDY R, et al.Exploration of Underwater Life with an Acoustically Controlled Soft Robotic Fish[J]. Science Robotics, 2018, 3(16): 3449.
[61] CHRISTIANSON C, GOLDBERG N N, DEHEYN D D, et al.Translucent Soft Robots Driven by Frameless Fluid Electrode Dielectric Elastomer Actuators[J]. Science Robotics, 2018, 3(17): 1893.
[62] PAN F, LIU J, ZUO Z, et al.Miniature Deep-sea Morphable Robot with Multimodal Locomotion[J]. Science Robotics, 2025, 10(100): 7821.
[63] PARK S J, GAZZOLA M, PARK K S, et al.Phototactic Guidance of a Tissue-engineered Soft-robotic Ray[J]. Science, 2016, 353(6295): 158-162.
[64] LI G, CHEN X, ZHOU F, et al.Self-powered Soft Robot in the Mariana Trench[J]. Nature, 2021, 591(7848): 66-71.
[65] ZHANG B, ZHANG Y, LI Y, et al.Octopus-Swimming-Like Robot with Soft Asymmetric Arms[C]//Proceedings of the 2025 IEEE 8th International Conference on Soft Robotics (RoboSoft). Lausanne: IEEE, 2025: 1-8.
[66] YE J, YAO Y C, GAO J Y, et al.LM-jelly: Liquid Metal Enabled Biomimetic Robotic Jellyfish[J]. Soft Robotics, 2022, 9(6): 1098-1107.
[67] HWANG J, WANG W D.Shape Memory Alloy-Based Soft Amphibious Robot Capable of Seal-Inspired Locomotion[J]. Advanced Materials Technologies, 2022, 7(6): 1-9.
[68] LIN Z, ZHENG W, ZHANG J, et al.Mudskipper-inspired Amphibious Robotic Fish Enhances Locomotion Performance by Pectoral-caudal Fins Coordination[J]. Cell Reports Physical Science, 2023, 4(10): 1-16.
[69] GU S, GUO S, ZHENG L.A Highly Stable and Efficient Spherical Underwater Robot with Hybrid Propulsion Devices[J]. Autonomous Robots, 2020, 44(5): 759-771.
[70] WANG Y, WANG Y, LI Y, et al.Dynamic Modeling and Robust Trajectory Tracking Control of a Hybrid Propulsion-based Small Underwater Robot[J]. Journal of Marine Science and Engineering, 2023, 11(10): 1-21.
[71] GAO D, WANG T, QIN F, et al.Design, Fabrication, and Testing of a Maneuverable Underwater Vehicle with a Hybrid Propulsor[J]. Biomimetic Intelligence and Robotics, 2022, 2(4): 1-9.
[72] LEE C, KIM S, CHU B.A Survey: Flight Mechanism and Mechanical Structure of the UAV[J]. International Journal of Precision Engineering and Manufacturing, 2021, 22(4): 719-743.
[73] HASSANALIAN M, ABDELKEFI A. Classifications, Applications,Design Challenges of Drones: A Review[J]. Progress in Aerospace sciences, 2017(91): 99-131.
[74] SULLIVAN J M.Evolution or Revolution? The Rise of UAVs[J]. IEEE Technology and Society Magazine, 2006, 25(3): 43-49.
[75] MARTINEZ O A, CARDONA M.State of the Art and Future Trends on Unmanned Aerial Vehicle[C]//Proceedings of the 2018 International Conference on Research in Intelligent and Computing in Engineering (RICE). Sand Salvador: IEEE, 2018: 1-6.
[76] DUFOUR L, OWEN K, MINTCHEV S, et al.A Drone with Insect-inspired Folding Wings[C]//Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York: IEEE, 2016: 1576-1581
[77] BAI S, DING R, CHIRARATTANANON P.A Micro Aircraft with Passive Variable-sweep Wings[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4016-4023.
[78] DI LUCA M, MINTCHEV S, HEITZ G, et al.Bioinspired Morphing Wings for Extended Flight Envelope and Roll Control of Small Drones[J]. Interface Focus, 2017, 7(1): 1-11.
[79] ZHANG J, LIU Y, GAO L, et al.Bioinspired Drone Actuated Using Wing and Aileron Motion for Extended Flight Capabilities[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 11197-11204.
[80] ROSSER JR J C, VIGNESH V, TERWILLIGER B A, et al. Surgical and Medical Applications of Drones: A comprehensive Review[J]. JSLS: Journal of the Society of Laparoendoscopic Surgeons, 2018, 22(3): 31-40.
[81] TADDIA Y, STECCHI F, PELLEGRINELLI A.Using DJI Phantom 4 RTK Drone for Topographic Mapping of Coastal Areas[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019(42): 625-630.
[82] FALANGA D, KLEBER K, MINTCHEV S, et al.The Foldable Drone: A Morphing Quadrotor That Can Squeeze and Fly[J]. IEEE Robotics and Automation Letters, 2018, 4(2): 209-216.
[83] KAMEL M, VERLING S, ELKHATIB O, et al.Voliro: An Omnidirectional Hexacopter With Tiltable Rotors[J]. IEEE Robotics & Automation Magazine, 2018, 25(4): 34-44.
[84] LI B, MA L, HUANG D, et al.A Flexibly Assembled and Maneuverable Reconfigurable Modular Multirotor Aerial Vehicle[J]. IEEE/ASME Transactions on Mechatronics, 2021, 27(3): 1704-1714.
[85] KIM B H, LI K, KIM J T, et al.Three-dimensional Electronic Microfliers Inspired by Wind-dispersed Seeds[J]. Nature, 2021, 597(7877): 503-510.
[86] 童晟翔, 史志伟, 耿玺, 等. 组合式仿枫树子飞行器与空中分体技术[J]. 航空学报, 2024, 45(6): 80-95.
TONG S X, SHI Z W, GENG X, et al.Combinable Samara Aircraft and Controlled Separation Technique[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 80-95.
[87] 王嘉鑫, 宣建林, 杨晓君, 等. 具备多模态运动能力的扑翼飞行器研究进展[J]. 航空学报, 2024, 45(18): 6-32.
WANG J X, XUAN J L, YANG X J.Research Progress of Flapping Wing Aircraft with Multimodal Motion Ability[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 6-32.
[88] 王军, 张震, 李富强, 等. 仿生扑翼无人系统研究综述[J]. 智能系统学报, 2023, 18(3): 410-439.
WANG J, ZHUANG Z, LI F Q, et al.A Review of the Research on Bionic Flapping-wing Unmanned Systems[J]. CAAI Transactions on Intelligent Systems, 2023, 18(3): 410-439.
[89] 周林, 张忠海, 王建辉, 等. 扑翼飞行器的研究现状与发展[J]. 兵器装备工程学报, 2022, 43(8): 44-54.
ZHOU L, ZHANG Z H, WANG J H, et al.Research Status and Development of Flapping Wing Aircraft[J]. Journal of Ordnance Equipment Engineering, 2022, 43(8): 44-54.
[90] ROSE C J, MAHMOUDIEH P, FEARING R S.Coordinated Launching of an Ornithopter with a Hexapedal Robot[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA). New York: IEEE, 2015: 4029-4035
[91] 段文博, 昂海松, 肖天航. 可差动扭转扑翼飞行器的设计和风洞试验研究[J]. 实验流体力学, 2013, 27(3): 35-40.
DUAN W B, ANG H S, XIAO T H.Design and Wind Tunnel Test of an Ornithopter with Differential Twist Wings[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3): 35-40.
[92] MACKENZIE D.A Flapping of Wings[J]. Science, 2012, 335(6075): 1430-1433.
[93] KEENNON M, KLINGEBIEL K, WON H.Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle[C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville: American Institute of Aeronautics and Astronautics, 2012
[94] HUANG H, HE W, FU Q, et al.A Bio-inspired Flapping-wing Robot with Cambered Wings and Its Application in Autonomous Airdrop[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(12): 2138-2150.
[95] WOOD R, NAGPAL R, WEI G Y.Flight of the Robobees[J]. Scientific American, 2013, 308(3): 60-65.
[96] CHUKEWAD Y M, JAMES J, SINGH A, et al.RoboFly: An Insect-sized Robot with Simplified Fabrication That Is Capable of Flight, Ground, and Water Surface Locomotion[J]. IEEE Transactions on Robotics, 2021, 37(6): 2025-2040.
[97] LIU F, LI S, XIANG J, et al.A Dragonfly-inspired Flapping Wing Robot Mimicking Force Vector Control Approach[C]//Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA). Paris: IEEE, 2024: 6029-6035.
[98] SIHITE E, RAMEZANI A.A Morphology-centered View Towards Describing Bats Dynamically Versatile Wing Conformations[J]. The International Journal of Robotics Research, 2025, 44(3): 431-464.
[99] 李洛, 张峰, 王宏伟, 等. 基于ESO的仿蝙蝠扑翼飞行器姿态控制仿真[J]. 机械设计与制造, 2024(7): 200-203.
LI L, ZHANG F, WANG H W, et al.Attitude Control and Simulation for a Bat Flapping Flight Based on ESO[J]. Machinery Design & Manufacture, 2024(7): 200-203.
[100] SAEED A S, YOUNES A B, CAI C, et al.A Survey of Hybrid Unmanned Aerial Vehicles[J]. Progress in Aerospace Sciences, 2018(98): 91-105.
[101] D’SA R, JENSON D, HENDERSON T, et al. SUAV: Q-An Improved Design for a Transformable Solar-powered UAV[C]//Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Paris: IEEE, 2016: 1609-1615
[102] WANG B, ZHU D, HAN L, et al.Adaptive Fault-tolerant Control of a Hybrid Canard Rotor/Wing UAV Under Transition Flight Subject to Actuator Faults and Model Uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4559-4574.
[103] PAN Y, GUO S, WHIDBORNE J, et al.Aerodynamic Performance of a Flyable Flapping Wing Rotor with Dragonfly-like Flexible Wings[J]. Aerospace Science and Technology, 2024(148): 1-14.
[104] LI Q, LI H, SHEN H, et al.An Aerial-Wall Robotic Insect That Can Land, Climb, and Take Off from Vertical Surfaces[J]. Research, 2023(6): 144.
[105] GAYANGO D, SALMORAL R, ROMERO H, et al.Benchmark Evaluation of Hybrid Fixed-flapping Wing Aerial Robot with Autopilot Architecture for Autonomous Outdoor Flight Operations[J]. IEEE Robotics and Automation Letters, 2023, 8(7): 4243-4250.
[106] KAN Z, YAO Z, LI D, et al.Design and Flight Test of the Fixed-flapping Hybrid Morphing Wing Aerial Vehicle[J]. Aerospace Science and Technology, 2023(143): 1-12.
[107] FARLEY K A, WILLIFORD K H, STACK K M, et al. Mars2020 Mission Overview[J]. Space Science Reviews, 2020(216): 1-41.
[108] 潘冬, 贾阳, 袁宝峰, 等. 祝融号火星车主动悬架式移动系统设计与验证[J]. 中国科学:技术科学, 2022, 52(2): 278-291.
PAN D, JIA Y, YUAN B F, et al.Design and Verification of the Active Suspension Mobility System of the Zhurong Mars Rover[J]. Scientia Sinica Technologica, 2022, 52(2): 278-291.
[109] ARM P, ZENKL R, BARTON P, et al.Spacebok: A Dynamic Legged Robot for Space Exploration[C]//Proceedings of the 2019 International Conference on Robotics and Automation (ICRA). Paris: IEEE, 2019: 6288-6294
[110] 高峰, 尹科, 孙乔, 等. 探月足式飞跃机器人设计与控制[J]. 飞控与探测, 2020, 3(4): 1-7.
GAO F, YIN K, SUN Q, et al.Design and Control of Legged Leaping Robot in Lunar Exploration[J]. Flight Control & Detection, 2020, 3(4): 1-7.
[111] BUALAT M, BARLOW J, FONG T, et al.Astrobee: Developing a Free-flying Robot for the International Space Station[C]//Proceedings of the AIAA SPACE 2015 Conference and Exposition. Pasadena: American Institute of Aeronautics and Astronautics, 2015.
[112] 航星. 中国空间站: 太空实验忙, 科研成果多[J]. 太空探索, 2025, (04): 12-15.
HANG X.China's Space Station: Busy with Space Experiments and Many Scientific Research Achievements[J]. Space Exploration, 2025, (04): 12-15.
[113] JIANG Z, CAO X, HUANG X, et al.Progress and Development Trend of Space Intelligent Robot Technology[J]. Space: Science & Technology, 2022, 217(8): 1-39.
[114] AHLSTROM T, CURTIS A, DIFTLER M, et al.Robonaut 2 on the International Space Station: Status Update and Preparations for IVA Mobility[C]//Proceddings of the AIAA SPACE 2013 Conference and Exposition. San Diego: American Institute of Aeronautics and Astronautics, 2013.
[115] WEI B, JIANG Z, LI H, et al.Adaptive Impedance Controller for a Robot Astronaut to Climb Stably in a Space Station[J]. International Journal of Advanced Robotic Systems, 2016, 13(3): 81.
[116] SHI Y, HOU X, NA Z, et al.Bio-inspired Attachment Mechanism of Dynastes Hercules: Vertical Climbing for On-orbit Assembly Legged Robots[J]. Journal of Bionic Engineering, 2024, 21(1): 137-148.
[117] HACKNEY K J, SCOTT J M, HANSON A M, et al.The Astronaut-athlete: Optimizing Human Performance in Space[J]. The Journal of Strength & Conditioning Research, 2015, 29(12): 3531-3545.
[118] 秦日鹏, 徐坤, 陈佳伟, 等. 一种星球探测六足轮腿机器人的设计与运动规划[J]. 航空学报, 2021, 42(1): 154-164.
QIN R P, XU K, CHEN J W, et al.Design and Motion Planning of Wheel-legged Hexapod Robot for Planetary Exploration[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 154-164.
[119] Ma X, Wang G, Liu K.Design and Optimization of a Multimode Amphibious Robot with Propeller-leg[J]. IEEE Transactions on Robotics, 2022, 38(6): 3807-3820.
[120] HAN M, GUO X, CHEN X, et al.Submillimeter-scale Multimaterial Terrestrial Robots[J]. Science Robotics, 2022, 7(66): 1-12.
[121] BAINES R, PATIBALLA S K, BOOTH J, et al.Multi-environment Robotic Transitions through Adaptive Morphogenesis[J]. Nature, 2022, 610(7931): 283-289.
[122] SIHITE E, KALANTARI A, NEMOVI R, et al.Multi-Modal Mobility Morphobot (M4) with Appendage Repurposing for Locomotion Plasticity Enhancement[J]. Nature communications, 2023, 14(3323): 1-15.
[123] WANG D, ZHANG F, ZHANG S, et al.Miniature Modular Reconfigurable Underwater Robot Based on Synthetic Jet[J]. Advanced Science, 2024, 11(39): 1-13.
[124] BALARAM J, AUNG M, GOLOMBEK M P.The Ingenuity Helicopter on the Perseverance Rover[J]. Space Science Reviews, 2021, 217(4): 56.
[125] FISCHER K, VELENTZA A M, LUCAS G, et al.Seeing Eye to Eye with Robots: An Experimental Study Predicting Trust in Social Robots for Domestic Use[C]//Proceedings of the 2024 33rd IEEE International Conference on Robot and Human Interactive Communication (ROMAN). Pasadena: IEEE, 2024: 2162-2168.
PDF(16523 KB)

Accesses

Citation

Detail

Sections
Recommended

/