AIGC-assisted Product Design Method Based on Prompt Word Optimization

WU Jing, WANG Shence, NIU Hongsu

Packaging Engineering ›› 2025, Vol. 46 ›› Issue (16) : 186-201.

PDF(5865 KB)
PDF(5865 KB)
Packaging Engineering ›› 2025, Vol. 46 ›› Issue (16) : 186-201. DOI: 10.19554/j.cnki.1001-3563.2025.16.016
Industrial Design

AIGC-assisted Product Design Method Based on Prompt Word Optimization

  • WU Jing, WANG Shence*, NIU Hongsu
Author information +
History +

Abstract

In response to the challenges of formalizing requirements, unstable solution quality, and incomplete evaluation standards in product design with AIGC technology, the work aims to explore the development of an Artificial Intelligence Generated Content (AIGC)-assisted design method for products. A Prompt-Optimized AIGC Design (POA) framework was constructed, which enhanced the quality of AIGC-assisted design through collaborative iteration across requirement analysis, concept generation, and solution evaluation. Firstly, the multi-source data analysis based on Principal Component Analysis (PCA) was used to formalize design requirements and extract key principal components such as appearance features and dynamic performance. Secondly, a hierarchical prompt word structure ("basic description + functional constraints + style definition") was constructed based on the Contrastive Language-Image Pretraining (CLIP) model, which optimized the generated quality through directional optimization and structural reconstruction. Finally, an improved AHM-TOPSIS multi-criteria decision-making method was applied to establish a multi-dimensional quantitative evaluation system that included ergonomics, material selection, and other factors. With the handheld rotary tiller design as a case study, the results showed that compared to the pure AIGC method, the proposed POA method significantly improved requirement analysis, concept generation, and iterative optimization, while also reducing the overall design cycle. Furthermore, the innovation of solutions and user satisfaction were enhanced. The proposed Prompt-Optimized AIGC Design method standardizes the application of AIGC technology in product design through structured requirement expression, solution optimization, and multi-criteria decision-making evaluation, providing a new theoretical framework and technical pathway for the AI-assisted design.

Key words

Artificial Intelligence Generated Content (AIGC) / Prompt Word Optimization (PWO) / Contrastive Language-Image Pretraining (CLIP) / handheld rotary tiller (HRT)

Cite this article

Download Citations
WU Jing, WANG Shence, NIU Hongsu. AIGC-assisted Product Design Method Based on Prompt Word Optimization[J]. Packaging Engineering. 2025, 46(16): 186-201 https://doi.org/10.19554/j.cnki.1001-3563.2025.16.016

References

[1] HO J, CHAN W, SAHARIA C, et al.Imagen Video: High Definition Video Generation with Diffusion Models[J]. Arxiv Preprint Arxiv, 2022: 2303.
[2] CHAMBON P, BLUETHGEN C, LANGLOTZ C P, et al.Adapting Pretrained Vision-Language Foundational Models to Medical Imaging Domains[J]. Arxiv Preprint Arxiv, 2022, 2022: 2210.
[3] RAMESH A, DHARIWAL P, NICHOL A, et al.Hierarchical Text-Conditional Image Generation with Clip Latents[J]. Arxiv Preprint Arxiv, 2022, 1(2): 3.
[4] 卢裕弘, 封颖超杰, 朱琳, 等. PromptVis: 面向文本生成图片的提示词的交互式可视分析方法[J]. 计算机辅助设计与图形学学报, 2025, 37(4): 687-696.
LU Y H, FENG Y C J, ZHU L, et al. PromptVis: An interactive visual analysis method for prompt words for text-generated images[J]. Journal of Computer-Aided Design and Graphics, , 2025, 37(4): 687-696.
[5] 路鹏, 吴凡, 唐建. 基于人工智能生成内容的产品造型设计与评价方法[J]. 图学学报, 2024, 45(6): 1277-1288.
LU P, WU F, TANG J.Product Design and Evaluation Methods Based on AI-Generated Content[J]. Journal of Graphics, 2024, 45(6): 1277-1288.
[6] JIANG Z B, XU F F, ARAKI J, et al.How Can we Know What Language Models Know?[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 423-438.
[7] LIU V, CHILTON L B.Design Guidelines for Prompt Engineering Text-to-Image Generative Models[C]//CHI Conference on Human Factors in Computing Systems. New Orleans: ACM, 2022: 1-23.
[8] WU T S, JIANG E, DONSBACH A, et al.PromptChainer: Chaining Large Language Model Prompts through Visual Programming[C]//CHI Conference on Human Factors in Computing Systems Extended Abstracts. New Orleans: ACM, 2022: 1-10.
[9] ROMBACH R, BLATTMANN A, LORENZ D, et al.High-Resolution Image Synthesis with Latent Diffusion Models[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 10674-10685.
[10] BERTUCCI D, HAMID M M, ANAND Y, et al.DendroMap: Visual Exploration of Large-Scale Image Datasets for Machine Learning with Treemaps[J]. IEEE Trans Vis Comput Graph, 2023, 29(1): 320-330.
[11] SHIN T, RAZEGHI Y, LOGAN R L, et al.AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Online. Stroudsburg: USAACL, 2020: 4222-4235.
[12] Gao T, Fisch A, Chen D, et al.Making Pre-Trained Language Models Better Few-Shot Learners[C]//Proceedings of ACL/IJCNLP, Stroudsburg: ACL, 2021: 3816-3830.
[13] STROBELT H, WEBSON A, SANH V, et al.Interactive and Visual Prompt Engineering for Ad-Hoc Task Adaptation with Large Language Models[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(1): 1146-1156.
[14] WANG Y L, SHEN S Y, LIM B Y.RePrompt: Automatic Prompt Editing to Refine AI-Generative Art towards Precise Expressions[C]//Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. Hamburg: ACM, 2023.
[15] LIU V, QIAO H, CHILTON L.Opal: Multimodal Image Generation for News Illustration[C]//Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology. Bend: ACM, 2022: 23.
[16] WONG K K, WANG X B, WANG Y, et al.Anchorage: Visual Analysis of Satisfaction in Customer Service Videos via Anchor Events[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(7): 4008-4022.
[17] ZENG H P, WANG X B, WANG Y, et al.GestureLens: Visual Analysis of Gestures in Presentation Videos[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(8): 3685-3697.
[18] YANG J, FAN J P, HUBBALL D, et al.Semantic Image Browser: Bridging Information Visualization with Automated Intelligent Image Analysis[C] //2006 IEEE Symposium on Visual Analytics Science and Technology. Baltimore: IEEE, 2006: 191-198.
[19] XIE X, CAI X W, ZHOU J P, et al.A Semantic-Based Method for Visualizing Large Image Collections[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(7): 2362-2377.
[20] CHEN C J, WU J, WANG X H, et al.Towards Better Caption Supervision for Object Detection[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(4): 1941-1954.
[21] 尹虎, 殷莹熙彤, 陈殿生, 等. 基于AIGC协同工业设计流程的气道廓清辅具设计研究与实践[J]. 包装工程, 2024, 45(16): 51-65.
YIN H, YIN Y, CHEN D S, et al.Research and Practice of Airway Clearance Assistive Device Design Based on AIGC Collaborative Industrial Design Process[J]. Packaging Engineering, 2024, 45(16): 51-65.
[22] 吕金阳, 黄剑波, 罗帆. 程式化下的创新: AIGC人机合作式环境空间创意设计表达[J]. 家具与室内装饰, 2024, 31(4): 126-131.
LYU J Y, HUANG J B, LUO F.Innovation under Programmatization: AIGC Human Machine Collaborative Environmental Space Creative Design Expression[J]. Furniture & Interior Design, 2024, 31(4): 126-131.
[23] 罗婷, 郑冬琴. 基于人工智能的传统手工艺彝族刺绣艺术设计融合创新研究[J]. 家具与室内装饰, 2024, 31(8): 17-23.
LUO T, ZHENG D Q.Research on the Integration and Innovation of Traditional HaLnudo iTcirnagf & t Zheng DongqinYi Embroidery Art Design Based on Artificial Intelligence[J]. Furniture & Interior Design, 2024, 31(8): 17-23.
[24] 汪皓, 李雪莲. 针对软体家具领域的AIGC辅助设计路径优化研究[J]. 家具与室内装饰, 2024, 31(6): 56-61.
WANG H, LI X L.Optimization of AI-Assisted Design Process in the Field of Soft Furniture Design[J]. Furniture & Interior Design, 2024, 31(6): 56-61.
[25] 牛晓霆, 刘祥源. 基于AIGC技术下圈椅数字化修复应用研究[J]. 家具与室内装饰, 2025, 32(3): 9-15.
NIU X T, LIU X Y.Research on the Digital Restoration and Application of Circle Chairs Based on AIGC Technology[J]. Furniture & Interior Design, 2025, 32(3): 9-15.
[26] 缪翌, 张卫锋, 徐领. 基于CLIP的视频时刻检索预训练模型[J]. 计算机应用研究, 2024, 41(12): 3866-3872.
MIAO Y, ZHANG W F, XU L.Pre-Training Model for Video Moment Retrieval Based on CLIP[J]. Application Research of Computers, 2024, 41(12): 3866-3872.
[27] WANG J, CHAN K C K, LOY C C. Exploring CLIP for Assessing the Look and Feel of Images[C]//Proceedings of the Thirty Seventh AAAI Conference on Artificial Intelligence and Thirty Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence, Palo Alto: AAAI Press, 2023: 2555-2563
[28] 李玲燕, 顾昊. 基于AHM-可拓评价模型的老旧小区绿色改造综合效益评价研究[J]. 生态经济, 2021, 37(3): 95-100.
LI L Y, GU H.Study on Comprehensive Benefit Evaluation of Green Transformation in Old Residential Areas Based on AHM-Extension Evaluation Model[J]. Ecological Economy, 2021, 37(3): 95-100.
[29] 李海君, 徐廷学, 应新永. 基于测试数据与扩展TOPSIS-灰色关联的导弹状态评估决策[J]. 航空兵器, 2021, 28(6): 88-94.
LI H J, XU T X, YING X Y.Missile Condition Assessment Decision Based on Test Data and Extended TOPSIS-Grey Correlation[J]. Aero Weaponry, 2021, 28(6): 88-94.
[30] 杨展华, 许成, 胡继鹏, 等. 基于熵值-TOPSIS法的国有企业内部经济责任审计评价体系研究[J]. 中国内部审计, 2021(2): 18-26.
YANG Z H, XU C, HU J P, et al.Research on Audit Evaluation System of Internal Economic Responsibility of State-Owned Enterprises Based on Entropy -TOPSIS Method[J]. Internal Auditing in China, 2021(2): 18-26.
PDF(5865 KB)

Accesses

Citation

Detail

Sections
Recommended

/