交通情报信息系统人机协同决策技术应用进展

颜羽鹏, 姜可, 张靖宇, 明世杰, 何自强, 石星辰

包装工程(设计栏目) ›› 2025, Vol. 46 ›› Issue (14) : 23-35.

PDF(6155 KB)
PDF(6155 KB)
包装工程(设计栏目) ›› 2025, Vol. 46 ›› Issue (14) : 23-35. DOI: 10.19554/j.cnki.1001-3563.2025.14.003
工业设计

交通情报信息系统人机协同决策技术应用进展

  • 颜羽鹏, 姜可*, 张靖宇, 明世杰, 何自强, 石星辰
作者信息 +

Application of Human-Machine Collaborative Decision Technology in Traffic Information System

  • YAN Yupeng, JIANG Ke*, ZHANG Jingyu, MING Shijie, HE Ziqiang, SHI Xingchen
Author information +
文章历史 +

摘要

目的 多任务协同是未来交通情报指挥的主要形式,为应对交通情报信息系统人机交互中的诸多挑战,梳理和分析了人机协同决策技术的研究现状,并提出了研究思路,为将来的技术研究和应用提供了理论支撑。方法 从交通情报信息系统概念和人机协同决策技术需求出发,结合人机协同决策技术特点,对系统的实现方式和关键技术进行分析和归纳。结果 复杂多变的交通态势增加了指挥人员进行情报研判,并做出准确决策的难度,而人机协同决策技术促进了人与智能系统的精准协作。结论 交通情报信息系统中,认知负荷过载和任务分配不合理是当前学界面临的挑战。人机协同决策技术以协同任务调度和联合认知决策为着力点,通过任务复杂度评价、任务分解和任务融合降低系统认知负荷,提高指挥决策效能,对未来交通情报信息系统的发展和研究有着举足轻重的意义。

Abstract

The multi-task collaboration is the main form of traffic information command in the future. In order to cope with many challenges in human-machine interaction of traffic information system, the work aims to sort out and analyze the research status of human-machine collaborative decision technology and put forward research ideas, providing theoretical support for future technology research and application. Starting from the concept of traffic information system and the requirements of human-machine collaborative decision technology, combined with the characteristics of human- machine collaborative decision technology, the implementation mode and key technologies of the system were analyzed and summarized. As a result, the complex and changeable traffic situation increased the difficulty of commanders in judging the intelligence and making accurate decisions. Human-machine collaborative decision technology promoted the precise cooperation between human and intelligence system. In conclusion, cognitive overload and unreasonable task allocation are the current challenges in the transportation information system. Human-machine collaborative decision technology focuses on collaborative task scheduling and joint cognitive decision-making. It is of great significance to the future development and research of traffic information system by reducing the cognitive load of the system through task complexity evaluation, task decomposition and task fusion.

关键词

情报信息系统 / 人机协同决策 / 认知负荷 / 任务调度

Key words

intelligence information system / human-machine collaborative decision / cognitive load / task scheduling

引用本文

导出引用
颜羽鹏, 姜可, 张靖宇, 明世杰, 何自强, 石星辰. 交通情报信息系统人机协同决策技术应用进展[J]. 包装工程(设计栏目). 2025, 46(14): 23-35 https://doi.org/10.19554/j.cnki.1001-3563.2025.14.003
YAN Yupeng, JIANG Ke, ZHANG Jingyu, MING Shijie, HE Ziqiang, SHI Xingchen. Application of Human-Machine Collaborative Decision Technology in Traffic Information System[J]. Packaging Engineering. 2025, 46(14): 23-35 https://doi.org/10.19554/j.cnki.1001-3563.2025.14.003
中图分类号: TB472    U491   

参考文献

[1] 关积珍. 智能交通系统发展演进及其代际特征[J]. 人工智能, 2022(4): 40-49.
GUAN J Z.Development and Evolution of Intelligent Transportation System and Its Intergenerational Characteristics[J]. Artificial Intelligence View, 2022(4): 40-49.
[2] LIU T, CEDER A, MA J H, et al.Graphical Human- Machine Interactive Approach for Integrated Bus Transit Scheduling: Lessons Gained from a Large Bus Company[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4): 1023-1028.
[3] 施大年. 构建公安交警情报信息应用机制的思考[J]. 道路交通管理, 2017(5): 34-35.
SHI D N.Thoughts on Constructing the Application Mechanism of Public Security Traffic Police Intelligence Information[J]. Road Traffic Management, 2017(5): 34-35.
[4] 贾凡. 面向多智能体的人机协同航迹规划技术研究[D]. 长沙: 国防科学技术大学, 2016.
JIA F.Research on Multi-agent Oriented Man-Machine Cooperative Route Planning Technology[D]. Changsha: National University of Defense Technology, 2016.
[5] ZHU W H, ZHANG T, YING Z P, et al.Real-Time High-Speed Train Rescheduling Based on a Human- Computer Interaction Framework[J]. High-speed Railway, 2023, 1(2): 130-140.
[6] YAHOUNI Z, MEBARKI N, BELKADI F, et al.Human-Machine Cooperation in Planning and Scheduling: A Case Study on an Unstable Environment[J]. European J of Industrial Engineering, 2018, 12(6): 757.
[7] SMIRNOV A, SHILOV N, GUSIKHIN O.Socio-Cyberphysical System for Proactive Driver Support-Approach and Case Study[C]//Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics. Colmar: SCITEPRESS- Science and and Technology Publications, 2015: 92-102.
[8] BADER R.Proactive Recommender Systems in Automotive Scenarios[D]. München: Technische Universitat München, 2013.
[9] 孙宇祥, 周献中, 徐爽, 等. 智能指挥与控制系统人机混合模型研究[J]. 火力与指挥控制, 2020, 45(12): 80-86.
SUN Y X, ZHOU X Z, XU S, et al.Research on Man- Machine Hybrid Model of Intelligent Command and Control System[J]. Fire Control & Command Control, 2020, 45(12): 80-86.
[10] 陈湉, 林勇. 大数据背景下台风灾害应急物流车辆调度优化仿真[J]. 灾害学, 2019, 34(1): 194-197.
CHEN T, LIN Y.Typhoon Disaster Emergency Logistics Vehicle Dispatching Optimization Simulation under Big Data Background[J]. Journal of Catastrophology, 2019, 34(1): 194-197.
[11] 段晓红, 赵建东, 宋守信. 基于混合蛙跳的路网应急车辆动态最短路径[J]. 交通运输系统工程与信息, 2016, 16(3): 181-186.
DUAN X H, ZHAO J D, SONG S X.Dynamic Shortest Paths of Emergency Vehicles in Expressway Network Based on Shuffled Frog Leaping Algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(3): 181-186.
[12] DUAN X H, WU J X, XIONG Y L.Dynamic Emergency Vehicle Path Planning and Traffic Evacuation Based on Salp Swarm Algorithm[J]. Journal of Advanced Transportation, 2022, 2022: 7862746.
[13] 段晓红, 吴家新, 周芷晴. 基于层次蝙蝠算法的应急车辆调度与交通疏散协同决策[J]. 交通运输系统工程与信息, 2020, 20(2): 157-165.
DUAN X H, WU J X, ZHOU Z Q.Collaborative Decision-Making of Emergency Vehicle Scheduling and Traffic Evacuation Based on Bi-Level Bat Algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 157-165.
[14] KATOCH S, CHAUHAN S S, KUMAR V.A Review on Genetic Algorithm: Past, Present, and Future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126.
[15] FANG J, ZHANG J, LU S, et al. Task Scheduling Strategy for Heterogeneous Multicore Systems[J]. IEEE Consumer Electronics Magazine, 2022(11-1).
[16] ROBANDI I, NISHIMORI K, NISHIMURA R, et al.Optimal Feedback Control Design Using Genetic Algorithm in Multimachine Power System[J]. International Journal of Electrical Power & Energy Systems, 2001, 23(4): 263-271.
[17] KNOX W B, STONE P.Combining Manual Feedback with Subsequent MDP Reward Signals for Reinforcement Learning[C]// AAMAS '10: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems. Richland: AAMAS, 2010. Agents and Multiagent Systems, 2010.
[18] MEIRAN N.Reconfiguration of Processing Mode Prior to Task Performance[J]. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1996, 22(6): 1423-1442.
[19] MONSELL S.Task Switching[J]. Trends in Cognitive Sciences, 2003, 7(3): 134-140.
[20] MONSELL S, MIZON G A.Can the Task-Cuing Paradigm Measure an Endogenous Task-Set Reconfiguration Process?[J]. Journal of Experimental Psychology Human Perception and Performance, 2006, 32(3): 493-516.
[21] TRAFTON J G, ALTMANN E M, BROCK D P, et al.Preparing to Resume an Interrupted Task: Effects of Prospective Goal Encoding and Retrospective Rehearsal[J]. International Journal of Human-Computer Studies, 2003, 58(5): 583-603.
[22] HÜBNER R, DRUEY M D. Response Execution, Selection, or Activation: What Is Sufficient for Response-Related Repetition Effects under Task Shifting?[J]. Psychological Research, 2006, 70(4): 245-261.
[23] ARRINGTON C M, LOGAN G D.The Cost of a Voluntary Task Switch[J]. Psychological Science, 2004, 15(9): 610-615.
[24] BRÉZILLON P, POMEROL J. Contextual Knowledge and Proceduralized Context[C]. Orlando: Proceedings of the AAAI-99 Workshop on Modeling Context in AI Applications, 1999.
[25] ROZO L, BRUNO D, CALINON S, et al.Learning Optimal Controllers in Human-Robot Cooperative Transportation Tasks with Position and Force Constraints[C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany. IEEE, 2015: 1024-1030.
[26] 卫宗敏. 面向复杂飞行任务的脑力负荷多维综合评估模型[J]. 北京航空航天大学学报, 2020, 46(7): 1287-1295.
WEI Z M.A Multi-Dimensional Comprehensive Evaluation Model of Mental Workload for Complex Flight Missions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1287-1295.
[27] 孙效华, 张义文, 秦觉晓, 等. 人机智能协同研究综述[J]. 包装工程, 2020, 41(18): 1-11.
SUN X H, ZHANG Y W, QIN J X, et al.Review on Human-Intelligent System Collaboration[J]. Packaging Engineering, 2020, 41(18): 1-11.
[28] 刘伟, 王赛涵, 辛益博, 等. 深度态势感知与智能化战争[J]. 国防科技, 2021, 42(3): 9-17.
LIU W, WANG S H, XIN Y B, et al.Deep Situational Awareness and Intelligent War[J]. National Defense Technology, 2021, 42(3): 9-17.
[29] 刘伟, 厍兴国, 王飞. 关于人机融合智能中深度态势感知问题的思考[J]. 山东科技大学学报(社会科学版), 2017, 19(6): 10-17.
LIU W, SHE X G, WANG F.Reflection on Deep Situation Awareness in Human-Machine Intelligence[J]. Journal of Shandong University of Science and Technology (Social Sciences), 2017, 19(6): 10-17.
[30] HEER J.Agency Plus Automation: Designing Artificial Intelligence into Interactive Systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(6): 1844-1850.
[31] LIU Z M, WANG J.Human-Cyber-Physical Systems: Concepts, Challenges, and Research Opportunities[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(11): 1535-1553.
[32] SHAH C.Collaborative Information Seeking[J]. Journal of the Association for Information Science and Technology, 2014, 65(2): 215-236.
[33] 王求真, 曹仔科, 马庆国.认知负荷视角下不同复杂度购物网站的眼动研究[J].信息系统学报, 2012, (1): 54-63.
WANG Q Z, CAO Z K, MA Q G.Eye Movement Research of Shopping Websites of Different Complexity from the Perspective of Cognitive Load[J]. Journal of Information Systems, 2012, (1): 54-63.
[34] REYCHAV I, WU D Z.The Interplay Between Cognitive Task Complexity and User Interaction in Mobile Collaborative Training[J]. Computers in Human Behavior, 2016, 62: 333-345.
[35] 孙守迁, 赵东伟, 戚文谦. 人机融合创新设计[J]. 包装工程, 2021, 42(12): 7-15.
SUN S Q, ZHAO D W, QI W Q.Human-Machine Fusion and Innovative Design[J]. Packaging Engineering, 2021, 42(12): 7-15.
[36] INAGAKI T.Smart Collaboration Between Humans and Machines Based on Mutual Understanding[J]. Annual Reviews in Control, 2008, 32(2): 253-261.
[37] ZIEBA S, POLET P, VANDERHAEGEN F, et al.Principles of Adjustable Autonomy: A Framework for Resilient Human-Machine Cooperation[J]. Cognition, Technology & Work, 2010, 12(3): 193-203.
[38] 钮建伟, 安月琪, 李晗, 等. 军事领域中的人机协作研究综述[J]. 包装工程, 2023, 44(10): 24-39.
NIU J W, AN Y Q, LI H, et al.Human-Machine Collaboration in the Military Field[J]. Packaging Engineering, 2023, 44(10): 24-39.
[39] ENDSLEY M R.Situation Awareness Global Assessment Technique (SAGAT)[C]//Proceedings of the IEEE 1988 National Aerospace and Electronics Conference. Dayton: IEEE, 2002: 789-795.
[40] SMITH P, BEATTY R, HAYES C, et al.Human- Centered Design of Decision-Support Systems[M]// Human-Computer Interaction Handbook. Boca Raton: CRC Press, 2012: 589-622.
[41] SIMON H A.Complex Systems: The Interplay of Organizations and Markets in Contemporary Society[J]. Computational & Mathematical Organization Theory, 2001, 7(2): 79-85.
[42] 李辉, 任洲洋, 胡博, 等. 基于时序生成对抗网络的月度风光发电功率场景分析方法[J]. 中国电机工程学报, 2022, 42(2): 537-548.
LI H, REN Z Y, HU B, et al.A Sequential Generative Adversarial Network Based Monthly Scenario Analysis Method for Wind and Photovoltaic Power[J]. Proceedings of the CSEE, 2022, 42(2): 537-548.
[43] 胡博, 谢开贵, 邵常政, 等. 双碳目标下新型电力系统风险评述: 特征、指标及评估方法[J]. 电力系统自动化, 2023, 47(5): 1-15.
HU B, XIE K G, SHAO C Z, et al.Commentary on Risk of New Power System under Goals of Carbon Emission Peak and Carbon Neutrality: Characteristics, Indices and Assessment Methods[J]. Automation of Electric Power Systems, 2023, 47(5): 1-15.
[44] 张小龙, 吕菲, 程时伟. 智能时代的人机交互范式[J]. 中国科学: 信息科学, 2018, 48(4): 406-418.
ZHANG X L, LYU F, CHENG S W.Interaction Paradigm in Intelligent Systems[J]. Scientia Sinica (Informationis), 2018, 48(4): 406-418.
[45] 于懿宁, 徐哲, 刘东宁. 考虑多技能人力资源的分布式多项目调度问题[J]. 系统工程理论与实践, 2020, 40(11): 2921-2933.
YU Y N, XU Z, LIU D N.Distributed Multi-Project Scheduling Problem with Multi-Skilled Staff[J]. Systems Engineering-Theory & Practice, 2020, 40(11): 2921-2933.
[46] ZHANG L L, LI Z F, YANG Y, et al.Human Error Unplanned Downtime Inferring and Job-Operator Matching Based on Inverse Optimal Value Method[J]. Computers & Industrial Engineering, 2020, 149: 106840.
[47] ZHANG L L, LI Z F, WU K J, et al.Exploring the Optimal Safety Person-Job Matching Method of Major Equipment Based on Human Reliability[J]. Applied Sciences, 2019, 9(6): 1219.
[48] VAN DEN EECKHOUT M, VANHOUCKE M, MAENHOUT B. A Column Generation-Based Diving Heuristic to Solve the Multi-Project Personnel Staffing Problem with Calendar Constraints and Resource Sharing[J]. Computers & Operations Research, 2021, 128: 105163.
[49] FiRAT M, BRISKORN D, LAUGIER A. A Branch-and- Price Algorithm for Stable Workforce Assignments with Hierarchical Skills[J]. European Journal of Operational Research, 2016, 251(2): 676-685.
[50] KIZYS R, DOERING J, JUAN A A, et al.A Simheuristic Algorithm for the Portfolio Optimization Problem with Random Returns and Noisy Covariances[J]. Computers & Operations Research, 2022, 139: 105631.
[51] KATOCH S, CHAUHAN S S, KUMAR V.A Review on Genetic Algorithm: Past, Present, and Future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126.
[52] 黄诗童, 赵希男, 周岩. 面向动态评价的长效机制及其构建研究[J]. 中国管理科学, 2022, 30(5): 180-191.
HUANG S T, ZHAO X N, ZHOU Y.Long-Term Effective Mechanism and Construction for Dynamic Evaluation[J]. Chinese Journal of Management Science, 2022, 30(5): 180-191.
[53] 杨阳, 汪海涛, 姜瑛, 等. 基于模糊层次分析法的软件质量评价模型的研究[J]. 计算机与数字工程, 2017, 45(4): 620-623.
YANG Y, WANG H T, JIANG Y, et al.Software Quality Evaluation Model Based on Fuzzy Analytic Hierarchy Process[J]. Computer & Digital Engineering, 2017, 45(4): 620-623.
[54] 吴丹, 梁少博, 董晶. 查询式序列视角下跨设备搜索信息准备与重用阶段的眼动变化研究[J]. 情报学报, 2019, 38(7): 760-770.
WU D, LIANG S B, DONG J.Change of Gaze Behavior in Information Preparation and Resumption of Cross- Device Search Based on Query Lists[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(7): 760-770.
[55] 赵佳宝, 张丙辰, 韦懿洋,等. 基于视觉刺激的ASD儿童干预图卡角色设计研究[J].包装工程, 2023, 44(2): 256-268.
ZHAO J B, ZHANG B C, WEI Y Y, et al.Role Design olIntervention Picture Card for ASD Children Based on Visual Stimulation[J]. Packaging Engineering. 2023, 44(2): 256-268.
[56] GOLDBERG J H, STIMSON M J, LEWENSTEIN M, et al.Eye Tracking in Web Search Tasks: Design Implications[C]//Proceedings of the Symposium on Eye Tracking Research & Applications-ETRA '02. New Orleans, Louisiana. ACM, 2002: 51-58.
[57] POOLE A, BALL L J.Eye Tracking in HCI and Usability Research[J]. Encyclopedia of Human Computer Interaction, 2005.
[58] GOLDBERG J H, KOTVAL X P.Computer Interface Evaluation Using Eye Movements: Methods and Constructs[J]. International Journal of Industrial Ergonomics, 1999, 24(6): 631-645.
[59] CHEN Y, YAN S Y, TRAN C C.Comprehensive Evaluation Method for User Interface Design in Nuclear Power Plant Based on Mental Workload[J]. Nuclear Engineering and Technology, 2019, 51(2): 453-462.
[60] 陈晓皎, 薛澄岐, 陈默, 等. 基于眼动追踪实验的数字界面质量评估模型[J]. 东南大学学报(自然科学版), 2017, 47(1): 38-42.
CHEN X J, XUE C Q, CHEN M, et al.Quality Assessment Model of Digital Interface Based on Eye-Tracking Experiments[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(1): 38-42.
[61] 顾芮冰, 张丙辰, 张仁杰, 等. 基于AHP层次分析法的儿童电子绘本角色面孔绘图方式研究[J]. 包装工程, 2022, 43(10): 221-231.
GU R B, ZHANG B C, ZHANG R J, et al.Role Face Drawing Methods of Children's Electronic Picture Books Based on AHP Nalytic Hierarchy Process[J]. Packaging Engineering, 2022, 43(10): 221-231.
[62] 尤洋, 王以宁, 张海. 智慧课堂环境下教学视频复杂度与学习者认知负荷关系研究[J]. 现代远距离教育, 2020(2): 91-96.
YOU Y, WANG Y N, ZHANG H.Research on the Relationship between the Complexity of Teaching Video and Learners' Cognitive Load in Intelligent Classroom Environment[J]. Modern Distance Education, 2020(2): 91-96.
[63] CHEN S Y, EPPS J.Using Task-Induced Pupil Diameter and Blink Rate to Infer Cognitive Load[J]. Human- Computer Interaction, 2014, 29(4): 390-413.
[64] 薛耀锋, 李卓玮. 基于眼动追踪技术的在线学习认知负荷量化模型研究[J]. 现代教育技术, 2019, 29(7): 59-65.
XUE Y F, LI Z W.Research on Online Learning Cognitive Load Quantitative Model Based on Eye Tracking Technology[J]. Modern Educational Technology, 2019, 29(7): 59-65.
[65] JOSEPH A W, MURUGESH R.Potential Eye Tracking Metrics and Indicators to Measure Cognitive Load in Human-Computer Interaction Research[J]. Journal of Scientific Research, 2020, 64(1): 168-175.
[66] LORENZ S, HELMERT J R, ANDERS R, et al.UUX Evaluation of a Digitally Advanced Human-Machine Interface for Excavators[J]. Multimodal Technologies and Interaction, 2020, 4(3): 57.
[67] 潘飞, 姜可, 王东琦. 基于眼动追踪技术的购票网站可用性设计研究[J]. 包装工程, 2020, 41(24): 243-247.
PAN F, JIANG K, WANG D Q.Usability Design of Ticket Purchase Website Based on Eye Tracking[J]. Packaging Engineering, 2020, 41(24): 243-247.

PDF(6155 KB)

Accesses

Citation

Detail

段落导航
相关文章

/