考虑脑区脑电情感特征的产品情感化设计研究

史丰硕, 谢黎, 王雨晴, 郭建文

包装工程(设计栏目) ›› 2025, Vol. 46 ›› Issue (14) : 76-87.

PDF(4042 KB)
PDF(4042 KB)
包装工程(设计栏目) ›› 2025, Vol. 46 ›› Issue (14) : 76-87. DOI: 10.19554/j.cnki.1001-3563.2025.14.008
工业设计

考虑脑区脑电情感特征的产品情感化设计研究

  • 史丰硕, 谢黎, 王雨晴, 郭建文*
作者信息 +

Emotional Design of Products Considering the EEG Emotional Characteristics of Brain Regions

  • SHI Fengshuo, XIE Li, WANG Yuqing, GUO Jianwen*
Author information +
文章历史 +

摘要

目的 以手表产品为例,探究不同脑区情感特征和多模态组合对产品评价的影响以提高评价的精细度和准确度。方法 基于脑电信号的情感识别确立手表产品的情感评价基准,开展脑电信号与不同生理信号的多模态组合以及四大脑区和额叶脑区下左右全脑的情感信号特征实验,基于支持向量机构建手表产品的最优情感评价模型,并进行应用验证。结果 四大脑区下左脑区的脑电信号、心电信号、皮电信号和感性意象组合的评价体系取得最优效果,准确率达到了81.25%。结论 表明了多模态信息融合的有效性和四大脑区下左脑区的脑电信号能够提供更多的情感价值信息,为深入理解情感化设计提供了新的研究视角。

Abstract

The work aims to explore the effects of emotional characteristics and multimodal combinations of different brain regions on product evaluation by taking watch products as an example, so as to improve the fineness and accuracy of evaluation. Based on the emotion recognition of EEG signals, the emotion evaluation benchmark of watch products was established, and the experiments were carried out to the multimodal combination of EEG signals and different physiological signals and the emotion signal characteristics of the left and right whole brains under the four brain regions and frontal brain regions. Based on the support vector mechanism, the optimal emotion evaluation model of watch products was established and verified by application. The evaluation system of the combination of EEG signals, ECG signals, electrodermal signals and perceptual images in the left brain region of the lower four brain regions achieved the best results, with an accuracy rate of 81.25%. It is shown that the effectiveness of multimodal information fusion and the EEG signals of the left brain region under the four brain regions can provide more emotional value information, which provides a new research perspective for in-depth understanding of emotional design.

关键词

产品情感化设计 / 脑电信号 / 脑区差异 / 多模态 / 产品评价

Key words

product emotional design / EEG signals / brain region differences / multimodal / product evaluation

引用本文

导出引用
史丰硕, 谢黎, 王雨晴, 郭建文. 考虑脑区脑电情感特征的产品情感化设计研究[J]. 包装工程(设计栏目). 2025, 46(14): 76-87 https://doi.org/10.19554/j.cnki.1001-3563.2025.14.008
SHI Fengshuo, XIE Li, WANG Yuqing, GUO Jianwen. Emotional Design of Products Considering the EEG Emotional Characteristics of Brain Regions[J]. Packaging Engineering. 2025, 46(14): 76-87 https://doi.org/10.19554/j.cnki.1001-3563.2025.14.008
中图分类号: TB472   

参考文献

[1] 林丽, 郭主恩, 阳明庆. 情感化智能设计研究现状及发展趋势[J]. 包装工程, 2023, 44(16): 22-31.
LIN L, GUO Z E, YANG M Q.Current Status and Development Trends of Emotional Intelligent Design Research[J]. Packaging Engineering, 2023, 44(16): 22-31.
[2] 高鑫. 基于脑机接口技术的康复医疗产品设计研究[D]. 北京: 北京服装学院, 2022.
GAO X.Research on the Design of Rehabilitation Medical Products Based on Brain-Computer Interface Technology [D]. Beijing: Beijing Institute of Clothing Technology, 2022.
[3] 孟荣华, 李子奇, 吴正佳, 等. 基于装配任务与EEG功率信息特征的操作员认知负荷研究[J]. 机械设计, 2022, 39(11): 60-70.
MENG R H, LI Z Q, WU Z J, et al.Study on Cognitive Load of Operators Based on Assembly Task and EEG Power Information Features[J]. Journal of Machine Design, 2022, 39(11): 60-70.
[4] 尹璐, 何人可, 张赫. 用户情感体验测量方法综述[J]. 南京艺术学院学报(美术与设计版), 2023(2): 147-156.
YIN L, HE R K, ZHANG H.Overview of Measuring Methods for User Emotional Experience[J]. Journal of Nanjing Arts Institute (Fine Arts & Design), 2023(2): 147-156.
[5] 赵冬妮. 基于事件相关电位的颜色对大脑决策认知功能影响的研究[D]. 天津: 河北工业大学, 2017.
ZHAO D N.Study on the Influence of Color Based on Event-Related Potential on the Cognitive Function of Brain Decision-Making[D]. Tianjin: Hebei University of Technology, 2017.
[6] OUZIR M, CHAKIR LAMRANI H, BRADLEY R L, et al.Neuromarketing and Decision-Making: Classification of Consumer Preferences Based on Changes Analysis in the EEG Signal of Brain Regions[J]. Biomedical Signal Processing and Control, 2024, 87: 105469.
[7] RAWNAQUE F S, RAHMAN K M, ANWAR S F, et al.Technological Advancements and Opportunities in Neuromarketing: A Systematic Review[J]. Brain Informatics, 2020, 7(1): 10.
[8] DENG L, WANG G H.Application of EEG and Interactive Evolutionary Design Method in Cultural and Creative Product Design[J]. Computational Intelligence and Neuroscience, 2019, 2019(1): 1860921.
[9] TOUCHETTE B, LEE S E.Measuring Neural Responses to Apparel Product Attractiveness[J]. Clothing and Textiles Research Journal, 2017, 35(1): 3-15.
[10] APRILIANTY F, PURWANEGARA M S, SUPRIJANTO. Effects of Colour towards Underwear Choice Based on Electroencephalography (EEG)[J]. Australasian Marketing Journal (AMJ), 2016, 24(4): 331-336.
[11] 邓丽, 陈波, 庞茜月, 等. 脑电技术在文化创意产品情感化设计中的应用[J]. 图学学报, 2018, 39(2): 327-332.
DENG L, CHEN B, PANG Q Y, et al.Application of EEG Technology in Emotional Design of Cultural and Creative Products[J]. Journal of Graphics, 2018, 39(2): 327-332.
[12] 洪兆溪, 冯毅雄, 娄山河, 等. 复杂产品不确定性智能设计研究综述与展望[J]. 机械工程学报, 2023, 59(19): 213-236.
HONG Z X, FENG Y X, LOU S H, et al.Overview and Prospects of Uncertain Intelligent Design for Complex Products[J]. Journal of Mechanical Engineering, 2023, 59(19): 213-236.
[13] 杨柳, 杨莹, 宋允洲, 等. 驾驶压力影响因素与识别方法研究综述[J]. 交通运输系统工程与信息, 2022, 22(6): 40-50.
YANG L, YANG Y, SONG Y Z, et al.A Review of Influencing Factors and Identification Methods of Driver Stress[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 40-50. https://link.cnki.net/doi/10.16097/j.cnki.1009-6744.2022.06.004
[14] LAI H, TIAN J H, WU Z, et al.A Multi-Subgroup Decision-Making Method for Design Selection Based on Subjective Reports and Objective Physiological Index Data[J]. Applied Soft Computing, 2023, 146: 110667.
[15] DU Z J, DENG M, LYU N C, et al.A Review of Road Safety Evaluation Methods Based on Driving Behavior[J]. Journal of Traffic and Transportation Engineering (English Edition), 2023, 10(5): 743-761.
[16] ZHU S Y, QI J, HU J, et al.A New Approach for Product Evaluation Based on Integration of EEG and Eye-Tracking[J]. Advanced Engineering Informatics, 2022, 52: 101601.
[17] 杨伯垲, 申丽娟, 杨敬民. 基于生理信号和多元统计的白芽奇兰茶口感评价[J]. 食品与机械, 2023, 39(7): 20-28.
YANG B K, SHEN L J, YANG J M.Taste Evaluation of Chinese Oolong Tea "Baiyaqilan" Based on Physiological Signals and Multivariate Statistics[J]. Food & Machinery, 2023, 39(7): 20-28.
[18] 罗靖宇. 基于脑电信号的情绪识别概述[J]. 现代计算机, 2020, 26(8): 68-71.
LUO J Y.Review of EEG-Based Emotion Recognition[J]. Modern Computer, 2020, 26(8): 68-71.
[19] 张家瑞, 王刚. 基于脑电信号的情感识别研究[J]. 计算机应用研究, 2019, 36(11): 3306-3309.
ZHANG J R, WANG G.Research on Emotion Recognition Based on EEG Signals[J]. Application Research of Computers, 2019, 36(11): 3306-3309.
[20] 林铭炜, 许江松, 林佳胤, 等. 面向在线教育的学习者情感识别综述[J]. 控制与决策, 2024, 39(4): 1057-1074.
LIN M W, XU J S, LIN J Y, et al.A Review of Emotion Recognition of Learners for Online Education[J]. Control and Decision, 2024, 39(4): 1057-1074. https://link.cnki.net/doi/10.13195/j.kzyjc.2023.1400
[21] ZHANG M Y, LIU D, WANG Q S, et al.Detection of Alertness-Related EEG Signals Based on Decision Fused BP Neural Network[J]. Biomedical Signal Processing and Control, 2022, 74: 103479.
[22] GULLETT N, ZAJKOWSKA Z, WALSH A, et al.Heart Rate Variability (HRV) as a Way to Understand Associations between the Autonomic Nervous System (ANS) and Affective States: A Critical Review of the Literature[J]. International Journal of Psychophysiology, 2023, 192: 35-42.
[23] HU Z X, LOU S H, XING Y, et al.Review and Perspectives on Driver Digital Twin and Its Enabling Technologies for Intelligent Vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(3): 417-440.
[24] 张书涛, 刘世锋, 王世杰, 等. 产品意象形态设计要素的均衡性评价[J]. 包装工程, 2022, 43(12): 208-216.
ZHANG S T, LIU S F, WANG S J, et al.Equilibrium Evaluation of Product Image Form Design Elements[J]. Packaging Engineering, 2022, 43(12): 208-216.
[25] 尤建新, 彭博达, 王岑岚. 基于粗糙集理论和VIKOR的工作满意度影响因素分析[J]. 上海管理科学, 2023, 45(5): 57-66.
YOU J X, PENG B D, WANG C L.Analyzing Influencing Factors of Job Satisfaction Based on Rough Set Theory and VIKOR[J]. Shanghai Management Science, 2023, 45(5): 57-66.
[26] 杜彦斌, 何国华, 曾丹, 等. 面向低碳的零部件表面涂层方案综合评价方法[J]. 计算机集成制造系统, 2025, 31(3): 804-814.
DU Y B, HE G H, ZENG D, et al.Comprehensive Evaluation Method of Low-Carbon Component Surface Coating Scheme[J]. Computer Integrated Manufacturing Systems, 2025, 31(3): 804-814.
[27] 杨海燕, 孙晓博, 程小文, 等. 基于VIKOR法的潍坊市水资源承载力综合评价[J]. 环境科学学报, 2020, 40(2): 716-723.
YANG H Y, SUN X B, CHENG X W, et al.Comprehensive Evaluation of Water Resources Carrying Capacity in Weifang Based on the VIKOR Method[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 716-723.
[28] 毕尧山, 吴基文, 翟晓荣, 等. 基于AHP与独立性权系数综合确权的煤矿含水层富水性评价[J]. 水文, 2020, 40(4): 40-45.
BI Y S, WU J W, ZHAI X R, et al.Evaluation of Coal Mine Aquifer Water-Richness Based on AHP and Independent Weight Coefficient Method[J]. Journal of China Hydrology, 2020, 40(4): 40-45.
[29] 黄岳钧, 颜爱民. 基于支持向量机的人本化包装设计评价模型[J]. 包装工程, 2015, 36(5): 136-139.
HUANG Y J, YAN A M.Evaluation Model of Humanistic Packaging Design Based on Support Vector Machine[J]. Packaging Engineering, 2015, 36(5): 136-139.
[30] KOELSTRA S, MUHL C, SOLEYMANI M, et al.DEAP: A Database for Emotion Analysis;Using Physiological Signals[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 18-31.
[31] 许见微. 基于自注意力机制的脑电情感识别研究[D]. 广州: 华南理工大学, 2022.
XU J W.Research on Emotion Recognition of Eeg Based on Self-Attention Mechanism[D]. Guangzhou: South China University of Technology, 2022.
[32] MEMIŞ S, ENGINOĞLU S, ERKAN U. Fuzzy Parameterized Fuzzy Soft K-Nearest Neighbor Classifier[J]. Neurocomputing, 2022, 500: 351-378.

基金

教育部人文社会科学研究青年基金项目(21YJCZH184)

PDF(4042 KB)

Accesses

Citation

Detail

段落导航
相关文章

/