低空农用无人机研究现状与工业设计赋能农业发展路径

孟凯宁, 李娟, 钟婉汝

包装工程(设计栏目) ›› 2025, Vol. 46 ›› Issue (16) : 55-69.

PDF(5312 KB)
PDF(5312 KB)
包装工程(设计栏目) ›› 2025, Vol. 46 ›› Issue (16) : 55-69. DOI: 10.19554/j.cnki.1001-3563.2025.16.005
特别策划

低空农用无人机研究现状与工业设计赋能农业发展路径

  • 孟凯宁, 李娟*, 钟婉汝
作者信息 +

Research Status of Low-altitude Agricultural UAVs and the Path of Industrial Design Empowering Agricultural Development

  • MENG Kaining, LI Juan*, ZHONG Wanru
Author information +
文章历史 +

摘要

目的 系统梳理近10年我国低空农用无人机的研究进展,以工业设计为切入点,探索其赋能低空农业装备升级及智慧农业发展的可行路径。方法 基于文献计量学方法,运用CiteSpace软件对2015年1月至2025年5月的相关文献进行知识图谱分析,从应用场景、技术研发及工业设计3个维度,解析研究热点、关键技术及发展趋势,并提取工业设计赋能低空农业的核心要素。结果 界定了低空农用无人机的概念内涵;指出智慧农业与精准农业是当前低空经济背景下农业应用的主要方向;揭示低空农用无人机正朝着规模化、集约化方向发展。结论 基于文献分析结果,提出“创新应用场景-全流程功能优化-生态化服务设计-多学科技术融合”4个层面的工业设计赋能框架,为推动低空农业装备智能化升级与智慧农业高质量发展提供理论依据与实践指导。

Abstract

The work aims to systematically review the research progress of low-altitude agricultural UAVs in China over the past decade and take the industrial design as the entry point to explore feasible paths for empowering the upgrading of low-altitude agricultural equipment and the development of smart agriculture. Based on bibliometrics, the Citespace software was used to conduct a knowledge graph analysis of relevant literature from January 2015 to May 2025. From three dimensions of application scenarios, technology research and development, and industrial design, the research hotspots, key technologies, and development trends were analyzed, and the core elements of industrial design empowering low-altitude agriculture were extracted. The conceptual connotation of low-altitude agricultural UAVs is defined. It is pointed out that smart agriculture and precision agriculture are the main directions of agricultural applications in the current low-altitude economy context and the low-altitude agricultural UAVs are developing towards large-scale and intensive directions. Based on the results of literature analysis, an industrial design empowerment framework at four levels, namely "innovative application scenarios—full-process function optimization—ecological service design—multidisciplinary technology integration", is proposed, providing theoretical basis and practical guidance for promoting the intelligent upgrading of low-altitude agricultural equipment and the high-quality development of smart agriculture.

关键词

低空装备 / 农用无人机 / 工业设计 / 智慧农业 / 精准农业

Key words

low-altitude equipment / agricultural UAVs / industrial design / smart agriculture / precision agriculture

引用本文

导出引用
孟凯宁, 李娟, 钟婉汝. 低空农用无人机研究现状与工业设计赋能农业发展路径[J]. 包装工程(设计栏目). 2025, 46(16): 55-69 https://doi.org/10.19554/j.cnki.1001-3563.2025.16.005
MENG Kaining, LI Juan, ZHONG Wanru. Research Status of Low-altitude Agricultural UAVs and the Path of Industrial Design Empowering Agricultural Development[J]. Packaging Engineering. 2025, 46(16): 55-69 https://doi.org/10.19554/j.cnki.1001-3563.2025.16.005
中图分类号: TB482   

参考文献

[1] 中国电子信息产业发展研究院. 中国低空经济发展研究报告(2024)[R]. 北京: 中国电子信息产业发展研究院, 2024.
China Academy of Information and Communications Technology. Research Report on the Development of China's Low-altitude Economy (2024)[R]. Beijing: China Academy of Information and Communications Technology, 2024.
[2] KARIMLI Y, MARANO A D.Exploring the Promises and Challenges of Urban Air Mobility (UAM)[J]. Advances in Aerospace Science and Technology, 2024, 9(3): 75-84.
[3] 金京涛. 无人飞行器在消防应急救援领域的应用探讨[J]. 消防科学与技术, 2016(8): 1139-1142.
JIN J T.Discussion on the Application of Unmanned Aerial Vehicles in Fire Emergency Rescue[J]. Fire Science and Technology, 2016(8): 1139-1142.
[4] 耿艳, 赵畅. 低空经济背景下我国快递物流业高质量发展的思考与对策建议[J]. 交通运输研究, 2024, 10(6): 95-103.
GENG Y, ZAHO C.Reflections and Suggestions on High-Quality Development of China’s Express Logistics Industry in Context of Low-Altitude Economy[J]. Transport Research, 2024,10(6):95-103.
[5] 沈映春. “低空+文旅”打造文化消费新增长点[J]. 人民论坛, 2025(9): 92-97.
SHEN Y C."Low-altitude + Culture and Tourism" Creates a New Growth Point for Cultural Consumption[J]. People's Tribune, 2025(9): 92-97.
[6] 农民日报. 数说 “三农” 25万架植保无人机:春耕时节的科技新军[EB/OL]. (2024-10-20)[2024-11-30]. http://m.toutiao.com/group/7473323685290476086/?upstream_biz=doubao.
Farmers' Daily. Data Speaks on "Agriculture, Rural Areas and Peasants" 250,000 Agricultural Drones: The New Force of Technology in Spring Plowing[EB/OL]. (2024-10-20)[2024-11-30]. http://m.toutiao.com/group/7473323685290476086/?upstream_biz=doubao.
[7] 王爱芸, 陆驰. 基于CiteSpace的我国农用无人机研究趋势可视化分析[J]. 西南林业大学学报(社会科学), 2025, 9(3): 23-31.
WANG A Y, LU C.Visualization Analysis of Research Trends in Agricultural Drones in China Based on CiteSpace[J]. Journal of Southwest Forestry University (Social Sciences), 2025, 9(3): 23-31.
[8] 郭雅楠, 范旭东. 基于文献计量学的智能网联汽车交互设计研究进展及趋势[J]. 包装工程, 2024, 45(24): 86-98.
GUO Y N, FAN X D.Progress and Trends of Bibliometrics-based Interaction Design for Intelligent Networked Vehicles[J]. Packaging Engineering, 2024, 45(24): 86-98.
[9] 张晓军. 无人农机技术在精准农业中的应用与前景[J]. 农家科技, 2024(32): 157-159.
ZHANG X J.The Application and Prospects of Unmanned Agricultural Machinery Technology in Precision Agriculture[J]. NongJia KeJi, 2024(32):157-159.
[10] 李宗飞, 茹煜, 陈京元, 等. 农用固定翼飞机的喷头喷雾特性[J]. 林业工程学报, 2018, 3(3): 111-116.
LI Z F, RU Y, CHEN J Y, et al.Atomizing Characteristics of Nozzle Based on Fixed Wing Agricultural Aircraft[J]. Journal of Forestry Engineering, 2018, 3(3): 111-116.
[11] 张良云, 李东, 苏丹. 荆门农用航空发展的调查与思考[J]. 数字农业与智能农机, 2019(11): 12-14.
ZHANG L Y, LI D, SU D.A Survey and Reflections on the Development of Agricultural Aviation in Jingmen[J]. Digital Agriculture and Intelligent Agricultural Machinery, 2019(11): 12-14.
[12] 周志艳, 明锐, 臧禹, 等. 中国农业航空发展现状及对策建议[J]. 农业工程学报, 2017, 33(20): 1-13.
ZHOU Z Y, MING R, ZANG Y, et al.The Current Situation and Policy Suggestions for the Development of Agricultural Aviation in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 1-13.
[13] 刘春生. 农用植保无人机的研究现状及趋势[J]. 农机使用与维修, 2022(7): 176-178.
LIU C S.The Current Status and Trends of Research on Agricultural Drones[J]. Farm Machinery Using & Maintenance, 2022(7): 176-178.
[14] KOVALEV I, KOVALEV D, PODOPLELOVA V,et al.Development of a Precision Farming System Based on the Use of UAVs for Spraying Pesticides and Fertilizers[J]. BIO Web of Conferences, 2024, 105(10): 5.
[15] 刘川, 元伟. 基于CiteSpace的空地协同物流配送研究可视化分析[J]. 农业装备与车辆工程, 2025, 63(4): 134-142.
LIU C, YUAN W.Air-ground Collaborative Logistics and Distribution Based on CiteSpaceResearch Visualisation and Analysis[J]. Agricultural Equipment & Vehicle Engineering, 2025, 63(4): 134-142.
[16] 祁志伦, 黄静, 张子扬. 物联网与无人机协同应用的农田智能监测系统研究[J]. 河北农机, 2025(1): 37-39.
QI Z L, HUANG J, ZHANG Z Y.Research on Intelligent Farmland Monitoring System With the Collaborative Application of the Internet of Things and Drones[J]. Hebei Farm Machinery, 2025(1): 37-39.
[17] 欧阳安. 我国农用无人机产业发展现状及建议[J]. 农业工程, 2022, 12(5): 5-9.
OU Y A.Development Status and Suggestions of Agricultural UAV Industry in China[J]. Agricultural Engineering, 2022, 12(5): 5-9.
[18] 央视网. “空中农夫”上岗、智能设备“把脉”新技术新装备竞技田间[EB/OL]. (2024-06-14)[2024-10-16]. https://www.toutiao.com/article/7515735909749441039/?upstream_biz=doubao&source=m_redirect.
CCTV.com. "Sky Farmers" Take Their Posts, Intelligent Equipment "Diagnoses"- New Technologies and Equipment Compete in the Fields[EB/OL]. (2024-06-14)[2024-10-16]. https://www.toutiao.com/article/7515735909749441039/?upstream_biz=doubao&source=m_redirect.
[19] 观察者网. 艾海鹏: 我们在新疆棉田里进行了一场前所未有的实验.[EB/OL]. (2024-4-20)[2024-5-13] https://baijiahao.baidu.com/s?id=1795178150334728463&wfr=spider&for=pc.
Guancha.cn. AI H P:We Conducted an Unprecedented Experiment in Xinjiang Cotton Fields.[EB/OL]. (2024-4-20)[2024-5-13]. https://baijiahao.baidu.com/s?id=1795178150334728463&wfr=spider&for=pc.
[20] 赵春江. 农业物联网与智能装备协同发展研究[J]. 农业机械学报, 2022, 53(4): 1-12.
ZHAO C J.Research on the Collaborative Development of Agricultural Internet of Th-ings and Intelligent Equipment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(4): 1-12.
[21] DHIFAOUI S, HOUAIDIA C, SAIDANE L A.Computing Paradigms for Smart Farm-ing in the Era of Drones: a Systematic review[J]. Annals of Telecommunications, 2024, 79(1): 35-59.
[22] 肖汉祥, 李燕芳, 袁龙宇, 等. 我国农用无人机在水稻生产中的应用现状与展望[J]. 广东农业科学, 2021, 48(8): 139-147.
XIAO H X, LI Y F, YUAN L Y, et al.Application and Prospect of China Agricultural Unmanned Aerial Vehicle in Rice Production[J]. Guangdong Agricultural Sciences, 2021, 48(8): 139-147.
[23] 于馨博, 张舒航, 张泓亮. 面向低空物联网的云-边协同演进模型与通信范式[J]. 物联网学报, 2024, 8(3): 76-90.
YU X B, ZHANG S H, ZHANG H L.An Edge-cloud Collaborative Model Evolution and Communication Paradigm in Internet of Low-altitude UAV[J]. Chinese Journal on Internet of Things, 2024, 8(3): 76-90.
[24] 佚名. 智慧科技助力齐鲁大地万象俱“耕”新[EB/OL]. (2024-10-26)[2024-11-28]. http://nync.shandong.gov.cn/xwzx/mtjj/202503/t20250326_4811008.html.
Anonymous. Smart Technology Empowers All-round Agricultural Innovation in Qilu Land[EB/OL]. (2024-10-26)[2024-11-28]. http://nync.shandong.gov.cn/xwzx/mtjj/202503/t20250326_4811008.html.
[25] 白雯鹏. 精准农业中无人机技术应用研究[J]. 农业开发与装备, 2024(3): 39-41.
BAI W P.Research on the Application of UAV Technology in Precision Agriculture[J]. Agricultural Development & Equipment, 2024(3): 39-41.
[26] BARVE A N, LAJURKAR M R, KHARBADE S B, et al.Advancing Precision Agriculture: The Role of UAVs and Drones in Sustainable Farming[J]. Asian Research Journal of Agriculture, 2024, 17(4): 987-992.
[27] 于丰华, 李世隆, 金忠煜, 等. 基于无人机遥感技术的大田作物精准施肥决策研究进展[J]. 沈阳农业大学学报, 2024, 55(6): 788-797.
YU F H, LI S L, JIN Z Y, et al.Research Progress of Precision Fertilization DecisionMaking for Field Crops Based on UAV Remote Sensing Technology[J]. Journal of Shenyang Agricultural University, 2024, 55(6): 788-797.
[28] 翟长远, 张焱龙, 邹伟, 等. 基于农药喷施溯源的精准变量喷药监控系统设计与试验[J]. 农业机械学报, 2024, 55(2): 160-169.
ZHAI C Y, ZHANG Y L, ZOU W, et al.Design and Test of Precision Variable rate Spray Monitoring and Control System Based on Pesticide Spraying Traceability[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(2): 160-169.
[29] 李尚平, 唐丹, 文春明, 等. 无人机图像中耕期甘蔗植株检测计数方法——基于改进YOLOv5s[J]. 农机化研究, 2025, 47(10): 138-145.
LI S P, TANG D, WEN C M, et al.Detection and Counting Method of Sugarcane Pl-ants in Tillage Based on Improved YOLOv5s in UAV Images[J]. Journal of Agricultural Mechanization Research, 2025, 47(10): 138-145.
[30] 张敏. 山东植保无人机在玉米田除草中的应用[J]. 农业工程技术, 2024, 44(35): 69-70.
ZHANG M.Application of Plant Protection UAVs in Cornfield Weeding in Shandong[J]. Agricultural Engineering Technology, 2024, 44(35): 69-70.
[31] 翁海勇, 姚越, 黄德耀, 等. 无人机低空遥感结合YOLOv7快速评估水稻穗颈瘟抗性[J]. 农业工程学报, 2024, 40(21): 110-118.
WENG H Y, YAO Y, HUANG D Y, et al.Rapid Evaluation of Rice Neck Blast Resistance Using Low Altitude Remote Sensing of UAV Combined with YOLOv7[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(21): 110-118.
[32] 祁佳峰, 郭鹏, 刘笑, 等. 基于无人机高清影像的棉花苗期长势监测及后期长势预测[J]. 江苏农业科学, 2023, 51(16): 170-178.
QI J F, GUO P, LIU X, et al.Study on Cotton Seedling Growth Monitoring and Later Growth Prediction Based on UAV High-definition Images[J]. Jiangsu Agricultural Sciences, 2023, 51(16): 170-178.
[33] LKIMA K, SALCEDO F P, MABROUKI J,et al.Precision Agriculture: Assessing Water Status in Plants Using Unmanned Aerial Vehicle[J]. IoT and Smart Devices for Sustainable Environment, 2022(10):139-153.
[34] 叶丽萍, 冯江笛, 顾艳. 植保无人机封闭处理对小麦田禾本科杂草的防治效果[J]. 现代农机, 2025(3): 76-78.
YE L P, FENG J D, GU Y.Control Efficacy of Closed Treatment by Plant Protection UAVs against Grassy Weeds in Wheat Fields[J]. Modern Agricultural Machinery, 2025(3): 76-78.
[35] 宋灿灿, 王国宾, 韩金钢, 等. 农用无人机播撒装置与技术研究综述[J]. 农业机械学报, 2025, 56(1): 110-122.
SONG C C, WANG G B, HAN J G, et al.Review of Research Progress on Agricultural UAV Spreading Devices and Technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2025, 56(1): 110-122.
[36] 郭晗. 农用无人机变量喷施控制系统设计与效果评价方法研究[D]. 杭州: 浙江大学, 2020.
GUO H.Design of Variable Rate Spray Control System and Spray Characteristics Evaluation for Agricultural Unmanned Aerial Vehicle[D]. Hangzhou: Zhejiang University, 2020.
[37] 赵军, 何家政, 孙冰寒, 等. 基于深度强化学习的四旋翼无人机姿态控制[J]. 中国惯性技术学报, 2025, 33(3): 284-292.
ZHAO J, HE J Z, SUN B H, et al.Attitude Control of Quadrotor Unmanned Aerial Vehicle Based on Deep Reinforcement Learning[J]. Journal of Chinese Inertial Technology, 2025, 33(3): 284-292.
[38] 李艳萍, 张光荣, 孙伶玉. 自适应控制技术在无人机飞行控制中的应用研究[J]. 电子质量, 2025(5): 30-33.
LI Y P, ZHANG G R, SUN L Y.Research on the Application of Adaptive Control Technology in Unmanned Aerial Vehicle Flight Control[J]. Electronics Quality, 2025(5):30-33.
[39] 曾紫媛. 强风环境下四旋翼无人机抗风扰控制研究与验证[D]. 武汉: 华中科技大学, 2024.
ZEN Z Y.Research and Validation of Wind Resistance Control for Quadrotor UAVs in Strong Wind Environment[D]. Hangzhou: Huazhong University of Science and Technology, 2024.
[40] 王耀南, 华和安, 张辉, 等. 性能函数引导的无人机集群深度强化学习控制方法[J]. 自动化学报, 2025, 51(5): 905-916.
WANG Y N, HUA H A, ZHANG H, et al.Performance Function-guided Deep Reinforcement Learning Control for UAV Swarm[J]. Acta Automatica Sinica, 2025, 51(5): 905-916.
[41] ZHAO W, XU T, WANG Y, et al.Research on Vision Navigation and Position System of Agricultural Unmanned Aerial Vehicle[J]. International Journal of Computer Integrated Manufacturing, 2020, 33(10-11): 1185-1196.
[42] 李继辉, 白越, 裴信彪, 等. 基于深度学习的农用无人机自主避障研究[J]. 农机化研究, 2021, 43(3): 1-7.
LI J H, BAI Y, PEI X B, et al.Research on Autonomous Obstacle Avoidance of Agricultural UAV Based on Deep Learning[J]. Journal of Agricultural Mechanization Research, 2021, 43(3): 1-7.
[43] 唐灿, 宗望远, 黄小毛, 等. 农用无人机多机多田块作业路径规划算法[J]. 华中农业大学学报, 2021, 405): 187-194.
TANG C, ZONG W Y, HUANG X M, et al.Path Planning Algorithm for Cooperative Operation of Multiple Agricultural UAVs in Multiple Fields[J]. Journal of Huazhong Agricultural University, 2021, 40(5): 187-194.
[44] 杨乾智, 吕偿, 林恩博, 等. 一种基于视觉的农用多功能智能化无人机设计方案[J]. 乡村科技, 2021, 12(36): 120-123.
YANG Q Z, LYU C, LIN E B, et al.A Vision-Based Design Scheme for Multifunctional Intelligent Agricultural UAVs[J]. Rural Science and Technology, 2021, 12(36): 120-123.
[45] 李鹏, 石永康, 郭稳敏, 等. 四旋翼植保无人机机臂折叠机构轻量化设计[J]. 农机化研究, 2024, 46(6): 116-121.
LI P, SHI Y K, GUO W M, et al.Lightweight Design of Arm Folding Mechanism of Quad-rotor Plant Protection UAV[J]. Journal of Agricultural Mechanization Research, 2024, 46(6): 116-121.
[46] 李鹏, 石永康, 万晓燕. 四旋翼农业无人机模块化设计及有限元分析[J]. 中国农机化学报, 2024, 45(5): 210-216.
LI P, SHI Y K, WANG X Y.Modular Design and Finite Element Analysis of Quadrotor Agricultural UAV[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(5): 210-216.
[47] 张文斌, 张龙全, 齐宝萍. 基于无人机应用的智慧农场构建探索[J]. 江苏农机化, 2020(4): 20-23.
ZHANG W B, ZHANG L Q, QI B P.Exploration on the Construction of Smart Farms Based on UAV Applications[J]. Jiangsu Agricultural Mechanization, 2020(4): 20-23.
[48] 杨妍, 沈宝国, 王松涛, 等. 无人机信息化服务平台在植保中的应用分析[J]. 装备制造技术, 2019(10): 81-83.
YANG Y, SHENG B G, WANG S T, et al.Application Analysis of UAV Information Service Platform in Plant Protection[J]. Equipment Manufacturing Technology, 2019(10):81-83.
[49] 罗宸宇. 基于微服务的植保无人机服务平台研究与实现[D]. 广州: 广东工业大学, 2022.
LUO C Y.Research and Implementation of Plant Protection UAV Service Platform Based on Microservice[D]. Guangzhou: Guangdong University of Technology, 2022.
[50] 广西云. 无人机吊运、AI识虫害、智慧分拣……看灵山如何智赋荔枝产业发展[EBOL]. (2024-10-26)[2024- 11-28]. 无人机吊运、AI识虫害、智慧分拣……看灵山如何智赋荔枝产业发展[EBOL]. (2024-10-26)[2024- 11-28]. http://nynct.gxzf.gov.cn/xwdt/gxlb/qz/t21241602.shtml.
Guangxi Cloud.UAV (UAV Cargo Transportation), AI Pest Detection, Smart Sorting...See How Lingshan Empowers the Development of Lychee Industry with Intelligence[EBOL]. (2024-10-26)[2024-11-28]. http://nynct.gxzf.gov.cn/xwdt/gxlb/qz/t21241602.shtml.
[51] MUHAMMED D, AHVAR E, AHVAR S, et al.Artificial Intelligence of Things (AIoT) for smart agriculture: A Review of Architectures, Technologies and Solutions[J]. Journal of Network and Computer Applications. 2024(228): 8.
[52] 张敏. 基于模块化理论的植保无人机设计研究[D]. 青岛: 青岛大学, 2023.
ZHANG M.Research on the Design of Plant Protection UAVs Based on Modular Theory[D]. Qingdao: Qingdao University, 2023.
[53] 吕海杰. 农业喷雾质量的室内试验与农田环境测试[J]. 农机使用与维修, 2024(8): 16-18.
LYU H J.Laboratory Test and Field Environment Test of Agricultural spray Quality[J]. Agricultural Machinery Using & Maintenance, 2024(8): 16-18.
[54] 邵将, 马国萍, 陈志勇, 等. 人机协同背景下农用无人机作业控制界面交互设计研究[J]. 包装工程, 2025, 46(4): 49-59.
SHAO J, MA G P, CHEN Z Y, et al.Interactive Design of the Operation Control Interface of Typical Drones in the Context of Human-Machine Collaboration[J]. Packaging Engineering, 2025, 46(4): 49-59.
[55] 刘九庆, 刘凡, 朱斌海. 旋翼无人机仿生栖息机械臂设计[J]. 森林工程, 2024, 40(4): 150-159.
LIU J Q, LIU F, ZHU B H.Design of Bionic Perching Robotic Arm for Rotor Drone[J]. Forest Engineering, 2024, 40(4): 150-159.
[56] 孔祥智, 谢东东. 农业新质生产力的理论内涵、主要特征与培育路径[J]. 中国农业大学学报(社会科学版), 2024, 41(4): 29-40.
KONG X Z, XIE D D. The Theoretical Connotation, Main Characteristics and Development Path of the New Quality Agricultural Productive Forces[J]. Journal of China Agricultural University (Social Sciences), 2024, 41(4): 29-40.
[57] 文丰安. 中国式现代化进程中新质生产力赋能产业结构优化: 内在机理与实施路径[J]. 经济纵横, 2024(12): 22-32.
WEN F A.New Quality Productive Forces Empower Industrial Structure Optimization in the Chinese Path to Modernization:Internal Mechanism and Implementation Path[J]. Economic Review Journal,2024(12):22-32.
[58] 赵晓丽. 工业设计在农业机械中的价值与实现路径[J]. 南方农机, 2024, 55(19): 134-136, 140.
ZHAO X L.The Value and Realization Path of Industrial Design in Agricultural Machinery[J]. China Southern Agricultural Machinery, 2024, 55(19): 134-136.
[59] 李笑瑜, 朱俊, 杨珍书, 等. 基于无人机平台的智慧农业系统研究与应用[J]. 南方农机, 2024, 55(3): 34-36.
LI X Y, ZHU J, YANG Z S, et al.Research and Application of Smart Agriculture Systems Based on UAV Platforms[J]. China Southern Agricultural Machinery, 2024, 55(3): 34-36.
[60] 庄茁. 人工智能赋能低空经济: 应用场景与未来方向[J]. 人民论坛·学术前沿, 2024(15): 38-44.
ZHUANG Z.AI Empowers Low-Altitude Economy: Application Scenarios and Future Directions[J]. Frontiers, 2024(15): 38-44.
[61] 高群, 陈诗瑶, 王宏杨. 中国智慧农场的时空演变及驱动因子研究[J]. 中国农业资源与区划, 2025(2): 11-20.
GAO Q, CHEN S Y, WANG H Y.Study on Spatlal-Tempopal Transition and Driving Factors Of Smart Farms In China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2025(2): 11-20.
[62] JU C, SON H I.Multiple UAV Systems for Agricultural Applications: Control, Implementation, and Evaluation[J]. Electronics, 2018, 7(9): 162.
[63] 魏思源, 邳丽颖, 吴曦, 等. AED无人机在应急救援领域的应用[J]. 岭南急诊医学杂志, 2025, 30(2): 235-237.
WEI S Y, PI L Y, WU X, et al.Application of AED UAVs in Emergency Rescue[J]. Lingnan Journal of Emergency Medicine, 2025, 30(2): 235-237.
[64] 王寅浩. 低空与AI双轮驱动下的旅游场景创新[N]. 北京商报, 2025-05-29(8).
WANG Y H. Innovation of Tourism Scenarios Driven by Low-Altitude and AI Dual Wheels[N]. Beijing Business Today, 2025-05-29(8).
[65] 吴志军, 那成爱, 王沈策. 以产品系统设计理念提升企业的核心竞争力[J]. 轻工机械, 2007, 25(1): 130-133.
WU Z J, NA C A, WANG S C.On Promoting Core Competence of Corporation with Product System Design Theory[J]. Light Industry Machinery, 2007, 25(1): 130-133.
[66] 袁莉, 杨随先, 韩志甲. 基于全生命周期设计思想的工业设计方法[J]. 包装工程, 2005, 26(3): 184-186.
YUAN L, YANG S X, HAN Z J.Industrial Design Method Based on LCD Thought[J]. Packaging Engineering, 2005, 26(3): 184-186.
[67] 李国喜, 吴建忠, 张萌, 等. 基于功能-原理-行为-结构的产品模块化设计方法[J]. 国防科技大学学报, 2009, 31(5): 75-80.
LI G X, WU J Z, ZHANG M, et al.Approach to Product Modular Design Based on FPBS[J]. Journal of National University of Defense Technology, 2009, 31(5): 75-80.
[68] KUMAR A S, HARDIK L G, KUMAR D K, et al.Conceptual Design of UAV Using Modular Approach[C]//AIP Conference Proceedings. London: AIP, 2021.
[69] FERREIRA M A D S, BEGAZO M F T, LOPES G C, et al. Drone Reconfigurable Architecture (DRA): A Multipurpose Modular Architecture for Unmanned Aerial Vehicles (UAVs)[J]. Journal of Intelligent & Robotic Systems, 2020, 99(4): 517-534.
[70] HEGDE D V.Biomimetic Airfoil Optimization to Supplement Flight Efficiency in Unmanned Aerial Vehicles[J]. International Journal of Computing and Engineering, 2024, 6(2): 1-12.
[71] 曾敬植. 气动仿生农业机器人的设计与实现[J]. 液压气动与密封, 2024, 44(3): 83-88.
ZENG J Z.Design and Implementation of Pneumatic Bionic Agricultural Robot[J]. Hydraulics Pneumatics & Seals, 2024, 44(3): 83-88.
[72] 陈克娥, 宋成乾. 低空经济赋能农业新质生产力发展的逻辑机理及场景构建研究[J/OL]. 成都理工大学学报(社会科学版), 2024(12): 1-10[2024-11-01]. http://kns.cnki.net/kcms/detail/51.1641.C.20250513.1049.008.html.
CHEN K E, SONG C Q.Research on the Logical Mechanism and Scenario Construct-ion of Low-altitude Economy Empowering the Development of New Quality Productivity in Agriculture[J\OL]. Journal of Chengdu University of Technology(Social Science-s), 2024(12): 1-10[2024-11-01]. http://kns.cnki.net/kcms/detail/51.1641.C.20250513.1049.008.html.
[73] 高国人, 张博怀, 时啟璐, 等. 图像处理系统的可视化界面设计与应用[J]. 自动化应用, 2025, 66(7): 233-236.
GAO G R, ZHANG B H, SHI Q L, et al.Visual Interface Design and Application of Image Processing System[J]. Automation Application, 2025, 66(7): 233-236.
[74] 宋云雪, 邹子真. 基于Unity3D中大型无人机仿真平台研究[J]. 中国民航大学学报, 2025, 43(2): 83-88.
SONG Y X, ZOU Z Z.Research on the simulation platform for medium and large UAV based on Unity3D[J]. Journal of Civil Aviation University of China, 2025, 43(2): 83-88.

基金

四川省社会科学重点研究基地—系统科学与企业发展研究中心规划项目(Xq24C07); 四川省社会科学重点研究基地—农业现代化与乡村振兴研究中心项目(AMRR2024005); 四川省铸牢中华民族共同体意识研究基地“四川文理学院巴文化研究院资助项目”(WLZL2024YB03); 四川省动漫研究中心基金项目(DM202304); 四川多元文化研究中心-基于生态视角的羌族非遗文化创造性传承与发展研究(DYWH2315)

PDF(5312 KB)

Accesses

Citation

Detail

段落导航
相关文章

/