元宇宙教育培训系统交互导识设计研究

胡珊, 张炳欣, 江炜韬, 荣令达, 张东

包装工程(设计栏目) ›› 2025, Vol. 46 ›› Issue (16) : 157-169.

PDF(2116 KB)
PDF(2116 KB)
包装工程(设计栏目) ›› 2025, Vol. 46 ›› Issue (16) : 157-169. DOI: 10.19554/j.cnki.1001-3563.2025.16.014
工业设计

元宇宙教育培训系统交互导识设计研究

  • 胡珊, 张炳欣*, 江炜韬, 荣令达, 张东
作者信息 +

Interactive Guide Design of Metaverse Teaching and Training System

  • HU Shan, ZHANG Bingxin*, JIANG Weitao, RONG Lingda, ZHANG Dong
Author information +
文章历史 +

摘要

目的 以元宇宙教育培训系统中的交互导识设计方法为研究对象,分析元宇宙教育培训过程中影响学习者认知负荷水平与培训学习效果的主要因素,为元宇宙教育培训系统的构建提供理论参考。方法 以传递信息量的多少为标准从视觉和听觉两个维度将6种交互导识元素划分为两类,并将其设置在学习和练习两种培训模式中,采用2×2多因素对照实验,通过客观绩效结果测试法与认知负荷主观量表获取数据,分析在不同交互导识元素构成的培训模式中,不同先前经验水平学习者培训效果和认知负荷水平的差异性。结果 元宇宙教育培训系统中由不同交互导识元素所构成的培训模式对学习者的学习效果和认知负荷具有显著影响,学习模式能减去低经验学习者的信息处理负担,而练习模式更适合高经验学习者的知识内化需求。结论 本研究验证了在元宇宙教育培训系统中,不同类型的交互导识元素需要结合学习者经验水平进行设计,以在优化信息交互方式,提升培训系统效率与适用性,为元宇宙教育培训系统的交互设计提供了理论参考。

Abstract

The work aims to analyze the main factors affecting the cognitive load level of the learners and the training and learning effect in the process of metaverse education and training with the interactive guide design method in the metaverse education and training system as the research object, so as to provide theoretical references for the construction of the metaverse education and training system. The six interactive elements were divided into two categories from visual and auditory dimensions based on the amount of information conveyed, and were set in two training modes: study and practice. 2×2 multifactorial controlled experiments were conducted to analyze the differences in training effects and cognitive load levels of learners with different levels of prior experience in training modes composed of different interactive elements by means of the objective performance outcome test method and the subjective cognitive load scale. Cognitive load levels of learners with different levels of prior experience in different training modes with different components of interactive guided knowledge elements were analyzed. The training modes composed of different interactive guided knowledge elements in the metaverse education and training system have a significant effect on the learning effect and cognitive load of the learners, with the learning mode subtracting the burden of information processing from the low-experienced learners, and the practice mode being more suitable for the knowledge internalization needs of the high-experienced learners. This study verifies that in the metaverse education and training system, different types of interaction guide elements need to be designed in combination with the learner's experience level in order to optimize the information interaction and enhance the efficiency and applicability of the training system, which provides a theoretical reference for the interaction design of the metaverse education and training system.

关键词

元宇宙教育培训 / 认知负荷理论(CLT) / 交互导识设计 / 先前经验 / 交互导识元素

Key words

metaverse education and training / Cognitive Load Theory (CLT) / interactive guide design / prior experience / interactive guide elements

引用本文

导出引用
胡珊, 张炳欣, 江炜韬, 荣令达, 张东. 元宇宙教育培训系统交互导识设计研究[J]. 包装工程(设计栏目). 2025, 46(16): 157-169 https://doi.org/10.19554/j.cnki.1001-3563.2025.16.014
HU Shan, ZHANG Bingxin, JIANG Weitao, RONG Lingda, ZHANG Dong. Interactive Guide Design of Metaverse Teaching and Training System[J]. Packaging Engineering. 2025, 46(16): 157-169 https://doi.org/10.19554/j.cnki.1001-3563.2025.16.014
中图分类号: TB472   

参考文献

[1] YOO G S, CHUN K.A Study on the Development of a Game-Type Language Education Service Platform Based on Metaverse[J]. Journal of Digital Contents Society, 2021, 22(9): 1377-1386.
[2] JAGATHEESAPERUMAL S K, AHMAD K, AL- FUQAHA A, et al.Advancing Education through Extended Reality and Internet of everything Enabled Metaverses: Applications, Challenges, and Open Issues[J]. IEEE Transactions on Learning Technologies, 2024, 17: 1120-1139.
[3] PREGOWSKA A, OSIAL M, GAJDA A.What Will the Education of the Future Look Like? how Have Metaverse and Extended Reality Affected the Higher Education Systems?[J]. Metaverse Basic and Applied Research, 2023, 3: 57.
[4] 宋倩, 洪海波, 杨辰, 等. 私有云平台上的航天产品虚拟装配培训技术研究[J]. 军民两用技术与产品, 2021(4): 17-22.
SONG Q, HONG H B, YANG C, et al.Research on Virtual Assembly Training Technology of Aerospace Products on Private Cloud Platform[J]. Dual Use Technologies & Products, 2021(4): 17-22.
[5] MILLER G A.The Magical Number Seven Plus or Minus Two: Some Limits on Our Capacity for Processing Information[J]. Psychological Review, 1956, 63(2): 81-97.
[6] PETERSON L R, PETERSON M J.Short-Term Retention of Individual Verbal Items[J]. Journal of Experimental Psychology, 1959, 58: 193-198.
[7] SWELLER J.Cognitive Load during Problem Solving: Effects on Learning[J]. Cognitive Science, 1988, 12(2): 257-285.
[8] RIAS R M, ZAMAN H, MANAP A A.Applying Redundancy and Animation in a Multimedia Learning Application on a Computer Science Domain[C]. In Proceedings of the Knowledge Management International Conference. Sintok: Universiti Utara Malaysia, 2014, 273-278.
[9] REYCHAV I, WU D Z.The Interplay between Cognitive Task Complexity and User Interaction in Mobile Collaborative Training[J]. Computers in Human Behavior, 2016, 62: 333-345.
[10] KHACHAREM A, ZOUDJI B, SPANJERS I A E, et al. Improving Learning from Animated Soccer Scenes: Evidence for the Expertise Reversal Effect[J]. Computers in Human Behavior, 2014, 35: 339-349.
[11] LEE E A, WONG K W.Learning with Desktop Virtual Reality: Low Spatial Ability Learners Are More Positively Affected[J]. Computers & Education, 2014, 79: 49-58.
[12] ANDERSEN S A W, MAHMUD P T M, KONGE L, et al. Cognitive Load in Distributed and Massed Practice in Virtual Reality Mastoidectomy Simulation[J]. The Laryngoscope, 2016, 126(2): 74-79.
[13] RICHARDSON R, SAMMONS D, DELPARTE D.2017. Augmented Affordances Support Learning: Comparing the Instructional Effects of the Augmented Reality Sandbox and Conventional Maps to Teach Topographic Map Skills[J]. The Journal of Interactive Learning Research, 2018(29): 231-248 .
[14] 甄明舒. 城市空间导识系统初探[D]. 北京: 中央民族大学, 2004.
ZHEN M S.Preliminary Study on Urban Spatial Guidance System[D]. Beijing: Central University for Nationalities, 2004.
[15] 吴晗, 吴海燕. 虚拟实景技术在数字化导视系统中的应用探索[J]. 居舍, 2019(13): 163.
WU H, WU H Y.Application and Exploration of Virtual Reality Technology in Digital Guide System[J]. Residence, 2019(13): 163.
[16] 胡珊, 周明煜, 熊欢. 交互式导识设计中视觉认知差异的研究与应用[J]. 包装工程, 2019, 40(10): 12-17.
HU S, ZHOU M Y, XIONG H.Difference of Visual Cognition in Guiding Design[J]. Packaging Engineering, 2019, 40(10): 12-17.
[17] STARRETT M J, MCAVAN A S, HUFFMAN D J, et al.Landmarks: A Solution for Spatial Navigation and Memory Experiments in Virtual Reality[J]. Behav Res Methods, 2021, 53(3): 1046-1059.
[18] HARADA Y, OHYAMA J.Quantitative Evaluation of Visual Guidance Effects for 360-Degree Directions[J]. Virtual Reality, 2022, 26(2): 759-770.
[19] HU S, RONG L D, HAN J L, et al.The Effects of Interaction Mode and Individual Differences on Usability and User Experience of Mobile Augmented Reality Navigation[J]. IEEE Access, 2023, 11: 41783-41795.
[20] 刘伟. 人机融合:超越人工智能[M]. 北京: 清华大学出版社, 2021.
LIU W.Man-Machine Integration: Beyond Artificial Intelligence[M]. Beijing: Tsinghua University Press, 2021.
[21] NEGUŢ A, MATU S A, SAVA F A, et al.Task Difficulty of Virtual Reality-Based Assessment Tools Compared to Classical Paper-and-Pencil or Computerized Measures: A Meta-Analytic Approach[J]. Computers in Human Behavior, 2016, 54: 414-424.
[22] 李玥琪, 王晰巍, 罗然, 等. 虚拟现实与传统阅读理解效果及沉浸体验对比实验研究[J]. 情报理论与实践, 2023:46(2): 127-135.
LI Y Q, WANG X W, LUO R, et al.Comparative Experimental Study on the Effects of Virtual Reality and Traditional Reading Comprehension and Immersion Experience[J]. Information Theory and Practice, 2023: 46(2): 127-135.
[23] LIM T, BONG J, KANG J, et al.2019. The Effects of Information Volume and Distribution on Cognitive Load and Recall: Implications for the Design of Mobile Marker-less Augmented Reality[C]. Educational Technology International, 2019, 20(2):137-168.
[24] JIANG W T, ZHANG B X, SUN R Q, et al.A Study on the Attention of People with Low Vision to Accessibility Guidance Signs[J]. Journal on Multimodal User Interfaces, 2024, 18(1): 87-101.
[25] WAGNER I, SCHNOTZ W.Learning from Static and Dynamic Visualizations: What Kind of Questions should we Ask?[M]//Learning from Dynamic Visualization. Cham: Springer International Publishing, 2017: 69-91.
[26] SUYATNA A, ANGGRAINI D, AGUSTINA D, et al.The Role of Visual Representation in Physics Learning: Dynamic Versus Static Visualization[J]. Journal of Physics: Conference Series, 2017, 909: 012048.
[27] BRANAGHAN R J, SANCHEZ C A.Feedback Preferences and Impressions of Waiting[J]. Human Factors, 2009, 51(4): 528-538.
[28] HAFEN R P, HENRY M J.Speech Information Retrieval: A Review[J]. Multimedia Systems, 2012, 18(6): 499-518.
[29] ROCCHESSO D.Audio Effects to Enhance Spatial Information Displays[C]. In Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission, Padua: IEEE, 2002.
[30] RIGAS D, YU H, MEMERY D. Experiments Using Speech, Non-Speech Sound and Stereophony as Communication Metaphors in Information Systems[C] In Proceedings 27th EUROMICRO Conference. 2001: A Net Odyssey. Warsaw: IEEE, 2002: 383-390.
[31] 胡皓. 行政办公空间人工照明环境电脑作业效率及疲劳度研究[D]. 重庆: 重庆大学, 2018.
HU H. Study on the Efficiency and Fatigue of Computer Operation in Artificial Lighting Environment of Administrative Office Space[D]. Chongqing: Chongqing University, 2018.[Sogou标题中译英]
[32] 郭伏, 钱省三. 人因工程学(第2版)[M]. 北京: 机械工业出版社, 2018.
GUO F, QIAN S S.2018. Ergonomics (2nd Edition)[M]. Beijing: Mechanical Industry Press, 2018.
[33] PAAS F G W C, VAN MERRIËNBOER J J G. Instructional Control of Cognitive Load in the Training of Complex Cognitive Tasks[J]. Educational Psychology Review, 1994, 6(4): 351-371.
[34] TSANG P S, VELAZQUEZ V L.Diagnosticity and Multidimensional Subjective Workload Ratings[J]. Ergonomics, 1996, 39(3): 358-381.
[35] HART S G, STAVELAND L E.Development of NASA- TLX (Task Load Index): Results of Empirical and Theoretical Research[M]. Amsterdam: Elsevier, 1988: 139-183.
[36] 余琦玮, 冯定忠, 徐新胜, 等. 基于Lego模拟的装配作业脑力负荷测量方法[J]. 工业工程与管理, 2018, 23(5): 53-59.
YU Q W, FENG D Z, XU X S, et al.Measurement of Mental Workload in Assembly Based on Lego Simulation[J]. Industrial Engineering and Management, 2018, 23(5): 53-59.
[37] EGETH H, KAHNEMAN D.Attention and Effort[J]. The American Journal of Psychology, 1975, 88(2): 339.
[38] 徐兵. 机械装配技术[M]. 2版. 北京: 中国轻工业出版社, 2014.
XU B.Mechanical Assembly Technology[M]. 2nd ed. Beijing: China Light Industry Press, 2014.
[39] 戴海琦, 张锋. 心理与教育测量[M]. 广东:暨南大学出版社,1999.
DAI H Q, ZHANG F.Psychological and Educational Measurement[M]. Guangdong: Jinan University Press, 2014.
[40] ULLRICH C.Rules for Adaptive Learning and Assistance on the Shop Floor[C]//13th International Conference on Cognition and Exploratory Learning in Digital Age, Mannheim: n.p. 2016.
[41] LOCH F, BÖCK S, VOGEL-HEUSER B. Teaching Styles of Virtual Training Systems for Industrial Applications - a Review of the Literature[J]. Interaction Design and Architecture (s), 2018(38): 46-63.
[42] OESTREICH H, WREDE S, WREDE B.Learning and Performing Assembly Processes: An Overview of Learning and Adaptivity in Digital Assistance Systems for Manufacturing[C]//Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments. Corfu Greece: ACM, 2020: 1-8.

基金

数字孪生创新设计培养基地示范性产教融合专业学位研究生联合培养基地建设项目(2024YH057); 数字孪生创新设计培养基地 示范性产教融合专业学位研究生联合培养基地建设项目(2024YH057)

PDF(2116 KB)

Accesses

Citation

Detail

段落导航
相关文章

/