目的 我国是人口农业大国也是人口大国,大豆作为世界上最大的油料作物和主要的植物油脂来源,一直是我国重要的经济作物和战略物资,其机械化收获水平直接影响国家粮食安全,如何突破传统大豆收获机装备技术瓶颈,将中国人的饭碗牢牢掌握在自己手上,实现高质广适智能化收获关键技术突破和应用推广是本文研究的重点。方法 针对我国豆类机械化收获存在的损失率高、智能化水平低等问题,融合北斗导航系统(BDS)与5G+MEC(多接入边缘计算)技术,构建了豆类无人驾驶收获装备的智能化作业系统。通过开发基于BDS的A-B路径规划算法。结合5G+MEC多源数据动态传输架构,实现了复杂田间环境下的精准导航与实时协同作业,路径规划精度达到厘米级。创新设计基于机器视觉的脱粒装置智能调控系统,集成多传感器融合控制技术,显著降低了收获过程中的机械损伤。结果 试验结果表明,该系统使豆类收获综合破碎率≤5%、总损失率≤5%、含杂率≤3%,作业效率达到8.2亩/h(1 亩=666.67 m2)。结论 豆类机械化收获的智能化转型为科技兴农提供了技术支撑,推动了未来农业装备向无人化、高效化方向发展。
Abstract
As a major agricultural and populous nation, China relies heavily on soybeans—the world's largest oil seed crop and primary source of plant-based oil—as a crucial cash crop and strategic resource. The level of mechanized soybean harvesting directly impacts China's national food security. This study focuses on breaking through the technological bottlenecks of traditional soybean harvesters, securing China's food supply, and achieving breakthroughs in the key technologies and widespread application of high-quality, wide-adaptability, and intelligent harvesting. To address the issues of high loss rates and low intelligence in legume mechanized harvesting in China, an intelligent operating system for unmanned legume harvesting equipment was developed by integrating the BeiDou Navigation Satellite System (BDS) with 5G+MEC (Multi-access Edge Computing) technology. By designing a BDS-based A-B line path planning algorithm and leveraging a 5G+MEC multi-source data dynamic transmission architecture, precise centimeter-level path planning was achieved, enabling precise navigation and real-time cooperative operation in complex field environments. An intelligent threshing device control system based on machine vision was innovatively designed, incorporating multi-sensor fusion control technology, and significantly reducing mechanical damage during harvesting. Experimental results demonstrated that the system achieved a comprehensive breakage rate of ≤5%, total loss rate of ≤5%, and impurity content of ≤3%, with an operating efficiency of 8.2 mu/h (1 mu = 666.67 m2). In conclusion, the intelligent transformation of mechanized legume harvesting provides technological support for technology-driven agricultural development, propelling future agricultural equipment toward unmanned and high-efficiency advancement.
关键词
北斗导航系统 /
5G+MEC /
豆类智能收获装备 /
无人驾驶 /
多源数据融合 /
智能化农业
Key words
BeiDou Navigation /
5G+MEC /
intelligent legume harvesting equipment /
unmanned /
multi-source data fusion /
smart agriculture
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WANG W, YANG S, ZHANG X, et al.Research on the Smart Broad Bean Harvesting System and the Self- Adaptive Control Method Based on CPS Technologies[J]. Agronomy, 2024, 14(7): 1405-1405.
[2] WADATKAR V P,GARROPPO G R, NENCIONI G, et al.Joint Multi-objective MEH selection and Traffic Path Computation in 5G-MEC Systems[J]. Computer Networks, 2024(240): 110168.
[3] 魏艳骄, 何岭, 张慧艳, 等. 我国大豆进口依赖性风险生成机理分析:基于相互依存视角[J]. 大豆科学, 2023, 42(6): 757-768.
WEI Y J, HE L, ZHANG H Y, et al.Analysis on the Formation Mechanism of Soybean Import Dependency Risk in China: From the Perspective of Interdependence[J]. Soybean Science, 2023, 42(6): 757-768.
[4] 杨光, 陈巧敏, 夏先飞, 等. 4DL-5A型蚕豆联合收割机关键部件设计与优化[J]. 农业工程学报, 2021, 37(23): 10-18.
YANG G, CHEN Q M, XIA X F, et al.Design and Optimization of Key Components for 4DL-5A Faba Bean Combine Harvester[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(23): 10-18.
[5] 连潇, 王建吉, 朱砚. 大豆收获机割台关键技术及损失研究现状分析[J]. 中国农机化学报, 2024, 4(8): 8-13.
LIAN X, WANG J J, ZHU Y.Research Status Analysis of Key Technologies and Losses in Soybean Harvester Headers[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(8): 8-13.
[6] 杨光, 陈巧敏, 肖宏儒, 等. 蚕豆脱粒设备研究现状及发展趋势[J]. 中国农机化学报, 2019, 40(3): 78-83.
YANG G, CHEN Q M, XIAO H R, et al. Research Status and Development Trends of Faba Bean Threshing Equipment[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(3): 78-83.
[7] 杨博琳, 何人可. 基于SAPAD和场景化思维的在线学习交互产品设计研究[J]. 包装工程, 2023, 44(2): 167-179.
YANG B L, He R K. Research on Interactive Product Design for Online Learning Based on SAPAD and Scenario-based Thinking[J]. Packaging Engineering, 2023, 44(2): 167-179.
[8] 刘继红. 数字化智能化产品设计方法与技术的发展[J]. 包装工程, 2023, 44(8): 27-36.
LIU J H.Development of Digital and Intelligent Product Design Methods and Technologies[J]. Packaging Engineering, 2023, 44(8): 27-36.
[9] 谭云峰. 基于4LZ-1.6Z型大豆联合收获机脱粒装置的设计与试验[D]. 成都: 四川农业大学, 2023.
TAN Y F.Design and Experiment of Threshing Device for 4LZ-1.6Z Soybean Combine Harvester[D]. Chengdu: Sichuan Agricultural University, 2023.
[10] 张砚雪. 基于物联网和卷积神经网络的智能农机安全驾驶系统[J]. 农机化研究, 2025, 47(3): 211-216.
ZHANG Y X.Intelligent Agricultural Machinery Safety Driving System Based on IoT and Convolutional Neural Networks[J]. Journal of Agricultural Mechanization Research, 2025, 47(3): 211-216.
[11] 赵鹏, 厉芳婷, 张亮, 等. 5G条件下北斗高精度导航定位技术与应用[J]. 测绘地理信息, 2024, 49(1): 88-90.
ZHAO P, LI F T, ZHANG L, et al.Beidou High-Precision Navigation and Positioning Technologies and Applications under 5G Conditions[J]. Geomatics and Information Science of Wuhan University, 2024, 49(1): 88-90.
[12] 刘碧贞, 黄华, 祝诗平,等. 基于北斗/GPS的谷物收割机作业综合管理系统[J]. 农业工程学报, 2015, 31(10): 204-210.
LIU B Z, HUANG H, ZHU S P, et al.Integrated Operation Management System for Grain Combine Harvesters Based on Beidou/GPS[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 204-210.
[13] 郭鸿鹏, 冯甘雨. 农机作业监控与优化调度系统结构设计——基于北斗卫星导航系统(BDS)[J]. 农机化研究, 2014, 36(2): 188-191.
GUO H P, FENG G Y. Structural Design of Agricultural Machinery Operation Monitoring and Optimal Scheduling System Based on BeiDou Satellite Navigation System (BDS)[J]. Journal of Agricultural Mechanization Research, 2014, 36(2): 188-191.
[14] 陈瑛, 李广源, 张小强, 等. 基于GNSS记录的农机田间和道路模式识别: 一种图卷积神经网络方法[J]. 农业计算机与电子, 2022(19): 198.
CHEN Y, LI G Y, ZHANG X Q, et al.Identifying Field and Road Modes of Agricultural Machinery Based on GNSS Recordings: A Graph Convolutional Neural Network Approach[J]. Computers and Electronics in Agriculture, 2022(19): 198.
[15] 吴肖伶, 张记会, 龚星衡, 等. 一种基于边缘计算的RTK定位方法[J]. 四川大学学报(自然科学版), 2021, 58(1): 50-56.
WU X L, ZHANG J H, GONG X H, et al. An Edge Computing-Based RTK Positioning Method[J]. Journal of Sichuan University (Natural Science Edition), 2021, 58(1): 50-56.
[16] 张绍成, 殷飞, 胡俊亮, 等. GPS/BDS-RTK与惯导组合实现大型桥梁垂向线形测量[J]. 测绘科学, 2022, 47(6): 1-7.
ZHANG S C, YIN F, HU J L, et al.Integration of GPS/BDS-RTK and Inertial Navigation System for Vertical Linear Measurement of Large Bridges[J]. Science of Surveying and Mapping, 2022, 47(6): 1-7.
[17] 尚立, 李毅超, 蔡硕, 等. 基于IRS辅助的北斗+5G融合定位[J]. 电力系统保护与控制, 2022, 50(24): 137-143.
SHANG L, LI Y C, CAI S, et al.Beidou+5G Integrated Positioning with IRS Assistance[J]. Power System Protection and Control, 2022, 50(24): 137-143.
[18] 钱俊楠, 冯桑, 利航, 等. 基于扩展卡尔曼滤波的农机路径跟踪控制算法研究[J]. 中国农机化学报, 2024, 45(7): 215-221.
QIAN J N, FENG S, LI H, et al.Research on Path Tracking Control Algorithm for Agricultural Machinery Based on Extended Kalman Filter[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(7): 215-221.
[19] 王琳, 张亚伟, 王骞, 等. 联合收割机脱粒滚筒智能调速控制方法研究[J]. 拖拉机与农用运输车, 2025, 52(2): 54-62.
WANG L, ZHANG Y W, WANG Q, et al.Research on Intelligent Speed Regulation Control Method for Combine Harvester Threshing Cylinder[J]. Tractor and Agricultural Transport Vehicle, 2025, 52(2): 54-62.
[20] 练毅. 稻麦联合收获机脱粒装置作业参数自适应控制系统研究[D]. 镇江: 江苏大学, 2020.
LIAN Y.Research on Adaptive Control System for Operational Parameters of Threshing Device in Rice-wheat Combine Harvester[D]. Zhenjiang: Jiangsu University, 2020.
基金
湖北省科技厅揭榜制科技重大项目(2022BEC053)